Current Microbiology

, Volume 75, Issue 1, pp 40–48 | Cite as

Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens

  • Denis Magaña-Ortíz
  • Francisco Fernández
  • Achim M. Loske
  • Miguel A. Gómez-Lim


Nucleoside hydrolase and sterol 24-c-methyltransferase, two antigenic proteins of Leishmania sp., were expressed in Aspergillus niger. Genetic transformation of conidia was achieved using underwater shock waves. scFv antibody addressed to DEC205, a receptor of dendritic cells, was fused to two proteins of Leishmania sp. Receptor 205 has a relevant role in the immune system in mammals; it can modulate T cell response to different antigens. Extracellular expression strategy of recombinant antibody was achieved using a fragment of native glucoamylase A (514 aa) as a carrier. Fermentations in shake flasks showed that the recombinant protein (104 kDa) was expressed and secreted only when maltose was used as carbon source; on the contrary, the expression was highly repressed in presence of xylose. Noteworthy, recombinant protein was secreted without glucoamylase-carrier and accumulation at intracellular level was not observed. The results presented here demonstrate the high value of Aspergillus niger as biotechnological platform for recombinant antibodies against Leishmania sp. at low cost. To the best of our knowledge, this is the first report about the recombinant expression of antigenic proteins of Leishmania sp. in filamentous fungi. The protein obtained can be used to explore novel strategies to induce immunity against Leishmania sp. or it can be employed in diagnostic kits to detect this neglected disease.



The authors would like to thank Ma. Concepción Arredondo, René Preza and Guillermo Vázquez for technical assistance. D.M.O. gratefully acknowledges the support of a Ph.D. scholarship (Number 219950) from CONACYT.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB (2017) A chimera containing CD4+ and CD8+ T-cell epitopes of the Leishmania donovani nucleoside hydrolase (NH36) optimizes cross-protection against Leishmania amazonesis infection. Front Immunol 8:100CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B (2016) Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 38:651–662CrossRefPubMedGoogle Scholar
  3. 3.
    Coconi-Linares N, Ortega-Dávila E, López-González M, García-Machorro J, García-Cordero J, Steinman RM, Cedillo-Barrón L, Gómez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31:2366–2371CrossRefPubMedGoogle Scholar
  4. 4.
    Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Duthie MS, Favila M, Hofmeyer KA, Tutterrow YL, Reed SJ, Laurance JD, Picone A, Guderian J, Bailor HR, Vallur AC, Liang H (2016) Strategic evaluation of vaccine candidate antigens for the prevention of visceral leishmaniasis. Vaccine 34:2779–2786CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Engwerda CR, Ato M, Kaye PM (2004) Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol 20:524–530CrossRefPubMedGoogle Scholar
  7. 7.
    Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1997) Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res Immunol 149:589–599CrossRefGoogle Scholar
  8. 8.
    Goto Y, Bogatzki LY, Bertholet S, Coler RN, Reed SG (2007) Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine 25:7450–7458CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11CrossRefPubMedGoogle Scholar
  10. 10.
    Gurung P, Kanneganti TD (2015) Innate immunity against Leishmania infections. Cell Microbiol 17:1286–1294CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    James ER, Van Zyl WH, Van Zyl PJ, Görgens JF (2012) Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase. Appl Microbiol Biotechnol 96:385–394CrossRefPubMedGoogle Scholar
  12. 12.
    Joosten V, Gouka RJ, Van Den Hondel CA, Verrips CT, Lokman BC (2005) Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392CrossRefPubMedGoogle Scholar
  13. 13.
    Kaminskyj SG (2001) Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans. Fungal Genet Rep 48:25–31CrossRefGoogle Scholar
  14. 14.
    León B, López-Bravo M, Ardavín C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531CrossRefPubMedGoogle Scholar
  15. 15.
    Loske AM (2017) Medical and biomedical applications of shock waves. Springer, ChamCrossRefGoogle Scholar
  16. 16.
    Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75CrossRefPubMedGoogle Scholar
  17. 17.
    Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16CrossRefPubMedGoogle Scholar
  18. 18.
    Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  19. 19.
    Matos I, Mizenina O, Lubkin A, Steinman RM, Idoyaga J (2013) Targeting Leishmania major antigens to dendritic cells in vivo induces protective immunity. PLoS ONE 8:e67453CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nico D, Claser C, Borja-Cabrera GP, Travassos LR, Palatnik M, da Silva Soares I, Rodrigues MM, Palatnik-de-Sousa CB (2010) Adaptive immunity against Leishmania nucleoside hydrolase maps its C-terminal domain as the target of the CD4+ T cell–driven protective response. PLoS Negl Trop Dis 4:e866CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ohl SD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubble. Phys Rev Lett 90:214502.1–214502.4CrossRefGoogle Scholar
  22. 22.
    Okazaki F, Aoki JI, Tabuchi S, Tanaka T, Ogino C, Kondo A (2012) Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol 96:81–88CrossRefPubMedGoogle Scholar
  23. 23.
    Peters NC, Kimblin N, Secundino N, Kamhawi S, Lawyer P, Sacks DL (2009) Vector transmission of Leishmania abrogates vaccine-induced protective immunity. PLoS Pathog 5(6):e1000484CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Plüddemann A, van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43:439–446CrossRefPubMedGoogle Scholar
  25. 25.
    Punekar NS, Suresh Kumar SV, Jayashri TN, Anuradha R (2003) Isolation of genomic DNA from acetone-dried Aspergillus mycelia. Fungal Genet News 50:15–16Google Scholar
  26. 26.
    Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609CrossRefPubMedGoogle Scholar
  27. 27.
    Steinman RM (2008) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324CrossRefPubMedGoogle Scholar
  28. 28.
    Tsagozis P, Karagouni E, Dotsika E (2014) Dendritic cells pulsed with peptides of gp63 induce differential protection against experimental cutaneous leishmaniasis. Int J Immunopathol Pharmacol 17:343–352CrossRefGoogle Scholar
  29. 29.
    Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Denis Magaña-Ortíz
    • 1
  • Francisco Fernández
    • 2
  • Achim M. Loske
    • 2
  • Miguel A. Gómez-Lim
    • 3
  1. 1.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de MéridaMéridaMexico
  2. 2.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  3. 3.Departamento de Ingeniería GenéticaCINVESTAV IrapuatoIrapuatoMexico

Personalised recommendations