Current Microbiology

, Volume 75, Issue 1, pp 32–39 | Cite as

Evaluation of Contamination Risks with Coxsackievirus B4 E2 in Swiss Albino Mice Stools

  • Leïla Aguech-Oueslati
  • Hela Jaidane
  • Famara Sane
  • Nedia Jrad-Battikh
  • Sabrine Ben Hamed
  • Didier Hober
  • Jawhar Gharbi


Coxsackie B4 (CV-B4), is a major cause of viral myocarditis, dilated cardiomyopathy, and pancreatitis. Like other human enteroviruses, CV-B4 is ubiquitous, excreted in the stool, transmitted by fecal–oral route, and persists in the environment. In the context of studies on CV-B4 infection, it is important to investigate how this virus can be eliminated and to show the possibility of contamination risk with a CV-B4 E2 infected Swiss albino mice. Swiss albino female mice were inoculated with CV-B4 E2 strain and divided in two groups: the first was intraperitoneally (I.P.) infected; the second was orally infected. In order to study the CV-B4 E2 infection in mice, total RNA was extracted from thymus, spleen, pancreas, and intestine, and viral genome was detected using semi-nested (RT-PCR). To further demonstrate infection or immunization of mice, Sera obtained from infected mice were assayed in vitro for their neutralizing antibody. To detect virus in stool of infected mice, stool samples were collected at different post-infection (p.i.) times. Neutralizing antibodies were detectable all along the follow-up period (Day 0, 1, 3, 7, 9, 17, 22, 30, 45, 60 p.i.) in I.P and oral infected mice. Our results showed that when mice were inoculated successively at day 0 and day 8, neutralizing activity was increased in I.P route more than in the oral route. Viral isolation in HEp-2 cells showed negative results. Stool viral analyses reveal a low detection of the CV-B4 E2 genome for all infected mice. In conclusion, our experiments demonstrated that there are no risks linked with the stool of CV-B4 E2 of Swiss albino mice. It would be interesting to characterize the inhibitors of the virus infectivity in these biological samples (stool) and investigate their targets and mechanisms of action.



Leila Aguech-Oueslati was supported by the Comité Mixte de Coopération Universitaire Franco-Tunisian (CMCU 08/G808) with grants from Egide Paris. This work was supported by the Ministry for Scientific Research, Technology and the Development of Competencies, (LR99ES27), Tunisia, Ministry for the National Education of Research and Technology, Université de Lille, et CHU de Lille Laboratoire de Virologie EA3610, F-59037, Lille, France.


  1. 1.
    Bahri O, Rezig D, Ben Nejma-Oueslati B, Ben Yahia A, Ben Sassi J, Hogga N, Sadraoui A, Triki H (2005) Enteroviruses in Tunisia: virological surveillance over 12 years (1992–2003). J Med Microbiol 54:63–69CrossRefPubMedGoogle Scholar
  2. 2.
    Bendig JW, Franklin OM, Hebden AK, Backhouse PJ, Clewley JP, Goldman AP, Piggott N (2003) Coxsackievirus B3 sequences in the blood of a neonate with congenital myocarditis, plus serological evidence of maternal infection. J Med Virol 70(4):606–609CrossRefPubMedGoogle Scholar
  3. 3.
    Bopegamage S, Borsanyiova M, Vargova A, Petrovicova A, Benkovicova M, Gomolcak P (2003) Coxsackievirus infection of mice I. Viral kinetics and histopathological changes in mice experimentally infected with coxscakievirus B3 and B4 by the oral route. Act Virol 47:245–251Google Scholar
  4. 4.
    Bopegamage S, Kovacova J, Vargova A, Motusova J, Petrovicova A, Benkovicova M, Gomolcak P, Bakkers J, van Kuppeveld F, Melchers WJG, Galama JM (2005) Coxsackie B virus infection of mice: inoculation by the oral route protects the pancreas from damage, but not from infection. J Gen Virol 86:3271–3280CrossRefPubMedGoogle Scholar
  5. 5.
    Bruce-Chwatt LJ (1972) Blood transfusion and tropical disease. Trop Dis Bull. 69:825–862PubMedGoogle Scholar
  6. 6.
    Chomczynski P, Sacchi N (1987) Single-step method of isolation of RNA by acid guanidium thiocyanate-phenol-chlorophorm extraction. Anal Biochem 162:156–159CrossRefPubMedGoogle Scholar
  7. 7.
    De Wazieres B, Gil H, Vuitton DA, Dupond JL (1998) Nosocomial transmission of dengue from a needle stick injury. Lancet 351(9101):498CrossRefPubMedGoogle Scholar
  8. 8.
    Elmastour F, Jaidane H, Aguech-Oueslati L, Benkahla MA, Aouni M, Gharbi J, Sane F, Hober D (2016) Immunoglobulin G-dependent enhancement of the infection with coxsackievirus B4 in a murine system. Virulence 30:1–9Google Scholar
  9. 9.
    Elmastour F, Jaïdane H, Ben Kahla MA, Aguech-Oueslati L, Sané F, Aymen Halouani A, Engelmann I, Bertin A, Mokni M, Gharbi J, Aouni M, Alidjinou EK, Hober D (2016) Anti-coxsackievirus B4 (CV-B4) enhancing activity of serum associated with increased viral load and pathology in mice reinfected with CV-B4. Virulence. doi: 10.1080/21505594.2016.1252018 Google Scholar
  10. 10.
    Gaaloul I, Riabi S, Evans M, Hunter T, Huber S, Aouni M (2016) Coxsackievirus B heart infections and their putative contribution to sudden unexpected death: an 8-year review of patients and victims in the coastal region of Tunisia. Forensic Sci Int 268:73–80CrossRefPubMedGoogle Scholar
  11. 11.
    Gauntt C, Trousdale M, La Badie D, Paque R, Nealon T (1979) Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice. J Med Virol 3:207–220CrossRefPubMedGoogle Scholar
  12. 12.
    Herwaldt BL (2001) Laboratory-acquired parasitic infections from accidental exposures. Clin Microbiol Rev 14(4):659–688CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jaïdane H, Gharbi J, Lobert PE, Lucas B, Hiar R, M’hadheb MB, Brilot F, Geenen V, Aouni M, Hober D (2006) Prolonged viral RNA detection in blood and lymphoid tissues from coxsackievirus B4 E2 orally-inoculated Swiss mice. Microbiol Immunol 50(12):971–974CrossRefPubMedGoogle Scholar
  14. 14.
    Jaïdane H, Sauter P, Sane F, Goffard A, Gharbi J, Hober D (2010) Enteroviruses and type 1 diabetes: towards a better understanding of the relationship. Rev Med Virol 20:265–280CrossRefPubMedGoogle Scholar
  15. 15.
    Jaïdane H, Sané F, Gharbi J, Aouni M, Romond MB, Hober D (2009) Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 25:591–603CrossRefPubMedGoogle Scholar
  16. 16.
    Jrad-Battikh N, Souii A, Oueslati L, Aouni M, Hober D, Gharbi J, Ben M’hadheb-Gharbi M (2014) Neutralizing activity induced by the attenuated coxsackievirus B3 Sabin3-like strain against CVB3 infection. Curr Microbiol 68(4):503–509CrossRefPubMedGoogle Scholar
  17. 17.
    Knowles NJ, Hovi T, Hyypiä T, King AMQ, Lindberg M, Pallansch MA, Palmenberg AC, Simmonds P, Skern T, Stanway G (2012) Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, LefkowitzEJ (eds) In virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on taxonomy of viruses. Elsevier, San Diego, CA, pp 855–880Google Scholar
  18. 18.
    Leparc I, Aymard M, Acute Fuchs F (1994) Chronic and persistent enterovirus and poliovirus infections: detection of viral genome by seminested PCR amplification in culture-negative samples. Mol Cell 8:487–495Google Scholar
  19. 19.
    Lofstrom C, Knutsson R, Axelsson CE, Radstrom P (2004) Rapid and specific detection of Salmonella spp. in animal feed samples by PCR after culture enrichment. Appl Environ Microbiol 70:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Melnick JL (1996) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Fields BN, Knipe DM (eds) Virology. Raven Press, New York, pp 549–605Google Scholar
  21. 21.
    Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35:995–998PubMedPubMedCentralGoogle Scholar
  22. 22.
    Oikarinen S, Tauriainen S, Viskari H, Simell O, Knip M, Virtanen S, Hyöty H (2009) PCR inhibition in stool samples in relation to age of infants. J Clin Virol 44(3):211–214CrossRefPubMedGoogle Scholar
  23. 23.
    Othman I, Mirand A, Slama I, Mastouri M, Peigue Lafeuille H, Aouni M, Bailly J (2015) Enterovirus migration patterns between France and Tunisia. PLoS ONE 10(12):e0145674CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Harrath R, Bourlet T, Dele´zay O, Douche-Aourik F, Omar S, Aouni M, Pozzetto B (2004) Coxsackievirus B3 replication and persistence in intestinal cells from mice infected orally and in the human CaCo-2 cell line. J Med Virol 74(2):283–290CrossRefPubMedGoogle Scholar
  25. 25.
    Retoo KN, Osman SA, Illavia SJ, Cameron-Wilson CL, Banatvala JE, Muir P (2001) Quantitative analysis of viral RNA kinetic in coxsackievirus B3-induced murine myocarditis: biphasic pattern of clearance following acute infection with persistence of residual viral RNA throughout and beyond the inflammatory phase of disease. J Gen Virol 81(Pt11):2755–2762Google Scholar
  26. 26.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent end points. Am J Hyg 27:493–497Google Scholar
  27. 27.
    Rotbart HA, Hayden FG (2001) Picornavirus infections. Arch Fam Med 9:913–920CrossRefGoogle Scholar
  28. 28.
    Seeff LB (1991) Hepatitis C from a needle stick injury. Ann Intern Med 115(5):411CrossRefPubMedGoogle Scholar
  29. 29.
    Welch JB, McGowan K, Searle B, Gillon J, Jarvis LM, Simmonds P (2001) Detection of enterovirus viraemia in blood donors. Vox Sang 80:211–215CrossRefPubMedGoogle Scholar
  30. 30.
    Yeung W-CG, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yoon JW, Austin M, Onodera T (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Leïla Aguech-Oueslati
    • 1
    • 2
  • Hela Jaidane
    • 1
    • 2
  • Famara Sane
    • 2
  • Nedia Jrad-Battikh
    • 1
  • Sabrine Ben Hamed
    • 1
  • Didier Hober
    • 2
  • Jawhar Gharbi
    • 1
  1. 1.Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales»”, Institut Supérieur de BiotechnologieUniversité de MonastirMonastirTunisia
  2. CHU de Lille Laboratoire de VirologieUniversité de LilleLilleFrance

Personalised recommendations