Skip to main content

Advertisement

Log in

Proteomic Analysis of Vibrio parahaemolyticus Under Cold Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a kind of food-borne pathogenic bacterium, which can seriously infect food, especially seafood causing gastroenteritis and other disease. We studied the global proteome responses of V. parahaemolyticus under cold stress by nano-liquid chromatography-tandem mass spectrometry to improve the present understanding of V. parahaemolyticus proteomics events under cold stress. A total of 1151 proteins were identified and 101 proteins were differentially expressed, of which 69 were significantly up-regulated and 32 were downregulated. Functional categorization of these proteins revealed distinct differences between cold-stressed and control cells. These proteins were grouped into 21 functional categories by the clusters of orthologous groups (COG) analysis. The most of up-regulated proteins were functionally categorized as nucleotide transport and metabolism, transcription, function unknown, and defense mechanisms. These up-regulated proteins play an important role under cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feldhusen F (2000) The role of seafood in bacterial foodborne diseases. Microbes Infect 2:1651–1660

    Article  CAS  PubMed  Google Scholar 

  2. Liston J (1990) Microbial hazards of seafood consumption. Food Technol 44:56–62

    Google Scholar 

  3. Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  4. Chiang ML, Ho WL, Chou CC (2008) Ethanol shock changes the fatty acid profile and survival behavior of Vibrio parahaemolyticus in various stress conditions. Food Microbiol 25:359–365

    Article  CAS  PubMed  Google Scholar 

  5. Browne N, Dowds BC (2002) Acid stress in the food pathogen Bacillus cereus. J Appl Microbiol 92:404–414

    Article  CAS  PubMed  Google Scholar 

  6. Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stress protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gualerzi CO, Pon CL (1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889

    Article  CAS  PubMed  Google Scholar 

  8. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

    CAS  PubMed  Google Scholar 

  9. Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    Article  CAS  PubMed  Google Scholar 

  10. Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86:9–75

    Article  CAS  PubMed  Google Scholar 

  11. Jia J, Chen Y, Jiang Y, Tang J, Yang L, Liang C, Jia Z, Zhao L (2014) Visualized analysis of cellular fatty acid profiles of Vibrio parahaemolyticus strains under cold stress. FEMS Microbiol Lett 357:92–98

    Article  CAS  PubMed  Google Scholar 

  12. Xuan G, Jia J, Chen Y, Wang J, Tang J, Jiang Y, Xu B, Liang C, Li M (2015) Strain-level visualized analysis of cold-stressed Vibrio parahaemolyticus based on MALDI–TOF mass fingerprinting. Microb Pathog 88:16–21

    Article  CAS  PubMed  Google Scholar 

  13. Lilley KS, Razzaq A, Dupree P (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 6:46–50

    Article  CAS  PubMed  Google Scholar 

  14. Durack J, Ross T, Bowman JP (2013) Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS ONE 8:e73603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. López-Ferrer D, Martínez-Bartolomé S, Villar M, Campillos M, Martín-Maroto F, Vázquez J (2004) Statistical model for large-scale peptide identification in databases from tandem Mass Spectra using SEQUEST. Anal Chem 76:6853–6860

    Article  PubMed  Google Scholar 

  16. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW (2012) In-depth analysis of the human tear proteome. J Proteom 75:3877–3885

    Article  CAS  Google Scholar 

  17. Griffiths JR, Chicooree N, Connolly Y, Neffling M, Lane CS, Knapman T, Smith DL (2014) Mass spectral enhanced detection of Ubls using SWATH acquisition: MEDUSA—simultaneous quantification of SUMO and ubiquitin-derived isopeptides. J Am Soc Mass Spectrom 25:767–777

    Article  CAS  PubMed  Google Scholar 

  18. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteom 4:1487–1502

    Article  CAS  Google Scholar 

  19. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444

    Article  Google Scholar 

  21. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim EY, Kim YR, Kim DG, Kong IS (2012) A susceptible protein by proteomic analysis from Vibrio anguillarum under various environmental conditions. Bioprocess Biosyst Eng 35:273–282

    Article  CAS  PubMed  Google Scholar 

  23. Vorob’eva LI (2004) Stressors, stress reactions and survival of bacteria. Prikl Biokhim Mikrobiol 40:261–269

    PubMed  Google Scholar 

  24. Polissi A, De Laurentis W, Zangrossi S, Briani F, Longhi V, Pesole G, Dehò G (2003) Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154:573–580

    Article  CAS  PubMed  Google Scholar 

  25. Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP, Abee T (1999) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145:3185–3194

    Article  CAS  PubMed  Google Scholar 

  26. Charollais J, Dreyfus M, Iost I (2004) CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32:2751–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dersch P, Kneip S, Bremer E (1994) The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 245:255–259

    Article  CAS  PubMed  Google Scholar 

  28. Mihoub F, Mistou MY, Guillot A, Leveau JY, Boubetra A, Billaux F (2003) Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int J Food Microbiol 89:171–184

    Article  CAS  PubMed  Google Scholar 

  29. Miladi H, Soukri A, Bakhrouf A, Ammar E (2012) Expression of ferritin-like protein in Listeria monocytogenes after cold and freezing stress. Folia Microbiol 57:551–556

    Article  CAS  Google Scholar 

  30. Wood RR, Arias CR (2011) Evaluation of global gene expression during cold shock in the human pathogen Vibrio vulnificus. Mar Biotechnol 13:942–954

    Article  CAS  PubMed  Google Scholar 

  31. Jia J, Chen Y, Jiang Y, Li Z, Zhao L, Zhang J, Tang J, Feng L, Liang C, Xu B, Gu P, Ye X (2015) Proteomic analysis of Vibrio metschnikovii under cold stress using a quadrupole Orbitrap mass spectrometer. Res Microbiol 166:618–625

    Article  CAS  PubMed  Google Scholar 

  32. Yang L, Zhou D, Liu X, Han H, Zhan L, Guo Z, Zhang L, Qin C, Wong HC, Yang R (2009) Cold-induced gene expression profiles of Vibrio parahaemolyticus: a time-course analysis. FEMS Microbiol Lett 291:50–58

    Article  CAS  PubMed  Google Scholar 

  33. Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  CAS  PubMed  Google Scholar 

  35. Nakashima K, Kanamaru K, Mizuno T, Horikoshi K (1996) A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178:2994–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74:4767–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48:299–325

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  CAS  PubMed  Google Scholar 

  41. Lelivelt MJ, Kawula TH (1995) Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toone WM, Rudd KE, Friesen JD (1991) deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637

    Article  CAS  PubMed  Google Scholar 

  46. Chen C, Deutscher MP (2005) Elevation of RNase R in response to multiple stress conditions. J Biol Chem 280:34393–34396

    Article  CAS  PubMed  Google Scholar 

  47. Qin T, Hu X, Hu J, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol Appl Biochem 62:563–573

    Article  CAS  PubMed  Google Scholar 

  48. Raïs B, Mazat JP (1995) Control of the metabolic pathway of threonine in E coli. Application of biotechnology. Acta Biotheor 43:143–153

    Article  PubMed  Google Scholar 

  49. Tang H, Wang E, Sui X, Man C, Jia R, Lin D, Qu Z, Chen W (2007) The novel alkali tolerance function of tfxG in Sinorhizobium meliloti. Res Microbiol 158:501–505

    Article  CAS  PubMed  Google Scholar 

  50. Sleator RD, Gahan CG, Hill C (2001) Identification and disruption of the proBA Locus in Listeria monocytogenes: role of proline biosynthesis in salt tolerance and murine infection. Appl Environ Microbiol 67:2571–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bode M, Longen S, Morgan B, Peleh V, Dick TP, Bihlmaier K, Herrmann JM (2013) Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid Redox Signal 18:1597–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K (2010) Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol 147:17–30

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Park JT (1999) The periplasmic murein peptide-binding protein MppA is a negative regulator of multiple antibiotic resistance in Escherichia coli. J Bacteriol 181:4842–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parada C, Orruño M, Kaberdin V, Bravo Z, Barcina I, Arana I (2016) Changes in the Vibrio harveyi cell envelope subproteome during permanence in cold seawater. Microb Ecol 72:549–558

    Article  CAS  PubMed  Google Scholar 

  55. Jia J, Li Z, Cao J, Jiang Y, Liang C, Liu M (2013) Proteomic analysis of protein expression in the induction of the viable but nonculturable state of Vibrio harveyi SF1. Curr Microbiol 67:442–447

    Article  CAS  PubMed  Google Scholar 

  56. Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800:798–805

    Article  CAS  PubMed  Google Scholar 

  57. Yu F, Inouye S, Inouye M (1986) Lipoprotein-28, a cytoplasmic membrane lipoprotein from Escherichia coli. Cloning, DNA sequence, and expression of its gene. J Biol Chem 261:2284–2288

    CAS  PubMed  Google Scholar 

  58. Urmersbach S, Aho T, Alter T, Hassan SS, Autio R, Huehn S (2015) Changes in global gene expression of Vibrio parahaemolyticus induced by cold- and heat-stress. BMC Microbiol 15:229

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24:2894–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mingwei Liu (Beijing Proteome Research Center) for sample preparation and Mass Spectrometry analysis. This work was supported by the Chinese State High-Tech Development Plan (2012AA101605), the Science Foundation of General Administration of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China (2012IK305, 2013IK175, and 2016IK198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Jia, J., Chen, Y. et al. Proteomic Analysis of Vibrio parahaemolyticus Under Cold Stress. Curr Microbiol 75, 20–26 (2018). https://doi.org/10.1007/s00284-017-1345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1345-4

Navigation