Skip to main content
Log in

Evaluating a New High-throughput Twin-Arginine Translocase Assay in Bacteria for Therapeutic Applications

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The twin-arginine translocase (Tat) pathway is involved in the transport of folded proteins in bacteria, and has been implicated in virulence and pathogenesis. A simple but efficient assay based on the quantification of the exopolysaccharide colanic acid was developed as a new means to study Tat function. Colanic acid contains a methylpentose (l-fucose) component, and its production is directly linked to the Tat pathway through the transport of enzymes involved in polysaccharide biosynthesis. Monitoring of l-fucose levels can be applied for identification of new Tat substrates and high-throughput screening of Tat inhibitors for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol 180(4):998–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bageshwar UK, VerPlank L, Baker D, Dong W, Hamsanathan S, Whitaker N et al (2016) High throughput screen for Escherichia coli twin arginine translocation (Tat) inhibitors. PLoS ONE 11(2):e0149659

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev of Biochem 84:843–864

    Article  CAS  Google Scholar 

  4. Branston SD, Matos CF, Freedman RB, Robinson C, Keshavarz-Moore E (2012) Investigation of the impact of Tat export pathway enhancement on E. coli culture, protein production and early stage recovery. Biotechnol Bioeng 109(4):983–991

    Article  CAS  PubMed  Google Scholar 

  5. De Buck E, Lammertyn E, Anné J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16(9):442–453

    Article  PubMed  Google Scholar 

  6. Dische Z, Shettles LB (1951) A new spectrophotometric test for the detection of methylpentose. J Biol Chem 192(2):579–582

    CAS  PubMed  Google Scholar 

  7. Hanna A, Berg M, Stout V, Razatos A (2003) Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol 69(8):4474–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma X, Cline K (2013) Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. Plant Cell 25(3):999–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mansell TJ, Linderman SW, Fisher AC, DeLisa MP (2010) A rapid protein folding assay for the bacterial periplasm. Prot Sci 19(5):1079–1090

    Article  CAS  Google Scholar 

  11. McCann JR, McDonough JA, Pavelka MS, Braunstein M (2007) β-Lactamase can function as a reporter of bacterial protein export during Mycobacterium tuberculosis infection of host cells. Microbiol 153(10):3350–3359

    Article  CAS  Google Scholar 

  12. McDonough JA, Hacker KE, Flores AR, Pavelka MS, Braunstein M (2005) The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial β-lactamases. J Bacteriol 187(22):7667–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, Grangeasse C (2007) Influence of tyrosine-kinase Wzc activity on colanic acid production in Escherichia coli K12 cells. J Mol Biol 367(1):42–53

    Article  CAS  PubMed  Google Scholar 

  14. Orfanoudaki G, Economou A (2014) Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cellular Proteom 13(12):3674–3687

    Article  CAS  Google Scholar 

  15. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496

    CAS  PubMed  Google Scholar 

  16. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40

    Article  CAS  PubMed  Google Scholar 

  17. Patel R, Smith SM, Robinson C (2014) Protein transport by the bacterial Tat pathway. Biochimica et Biophysica Acta (BBA)-Mol. Cell Res 1843(8):1620–1628

    CAS  Google Scholar 

  18. Pohlschröder M, Giménez MI, Jarrell KF (2005) Protein transport in Archaea: sec and twin arginine translocation pathways. Curr Opin in Microbial 8(6):713–719

    Article  Google Scholar 

  19. Ramasamy SK, Clemons WM (2009) Structure of the twin-arginine signal-binding protein DmsD from Escherichia coli. Acta Crystallographica Sect F: structural Biol. and Crystallization. Communications 65(8):746–750

    CAS  Google Scholar 

  20. Reynolds MM, Bogomolnaya L, Guo J, Aldrich L, Bokhari D, Santiviago CA et al (2011) Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection. PLoS ONE 6(1):e15800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shruthi H, Anand P, Murugan V, Sankaran K (2010) Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications. Mol. BioSystems 6(6):999–1007

    Article  CAS  Google Scholar 

  22. Stanley NR, Findlay K, Berks BC, Palmer T (2001) Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183(1):139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stefanie S, Friedhelm P, Kieran D, Qiang CZ, Saheed I, Mechthild P (2010) Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. Archaea. doi:10.1155/2010/410975

    Google Scholar 

  24. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J of Bacteriol 178(16):4885–4893

    Article  CAS  Google Scholar 

  25. Thomas JR, Bolhuis A (2006) The tatC gene cluster is essential for viability in halophilic archaea. FEMS Microbial Lett 256(1):44–49

    Article  CAS  Google Scholar 

  26. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  PubMed  Google Scholar 

  27. Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T (2008) A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375(3):595–603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DG thanks Council of Scientific and Industrial Research (CSIR), India, for Senior Research Fellowship. SKR thanks DST, Govt of India for Ramanujan fellowship. This Project was funded by DST Young investigator grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sureshkumar Ramasamy.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Chougule, S., Avinash, V.S. et al. Evaluating a New High-throughput Twin-Arginine Translocase Assay in Bacteria for Therapeutic Applications. Curr Microbiol 74, 1332–1336 (2017). https://doi.org/10.1007/s00284-017-1321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1321-z

Navigation