Skip to main content

Advertisement

Log in

Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This work focuses on the biological understanding of the biocontrol agent Bacillus amyloliquefaciens CPA-8 in order to accomplish the characterization required in the registration process for the development of a microorganism-based product. The tolerance of CPA-8 to grow under different pH–temperature and water activity (a w)–temperature conditions was widely demonstrated. Regarding the pH results, optimum growth at the evaluated conditions was observed at 37 °C and pH between 7 and 5. On the contrary, the slowest growth was recorded at 20 °C and pH 4.5. Moreover, the type of solute used to reduce a w had a great influence on the minimum a w at which the bacterium was able to grow. The lowest a w values for CPA-8 growth in media modified with glycerol and glucose were 0.950 and 0.960, respectively. Besides, the lowest a w for CPA-8 growth increased when the temperature decreased to 20 °C, at which CPA-8 was not able to grow at less than 0.990 a w, regardless of the type of solute. Antibiotic susceptibility tests were carried out to determine which antibiotic could affect the behavior of the bacteria and revealed that CPA-8 was clearly resistant to hygromycin. Finally, a PCR amplification assay to detect the presence of enterotoxic genes from Bacillus cereus in CPA-8 was also performed. CPA-8 gave negative results for all the genes tested except for nheA gene, which is not enough for the toxicity expression, suggesting that fruit treated with this antagonist will not be a potential vehicle for foodborne illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3):277–294

    Article  CAS  PubMed  Google Scholar 

  2. Beattie SH, Williams AG (1999) Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett Appl Microbiol 28(3):221–225

    Article  CAS  PubMed  Google Scholar 

  3. Casals C, Teixidó N, Viñas I, Silvera E, Lamarca N, Usall J (2010) Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. Eur J Plant Pathol 128(1):51–63

    Article  CAS  Google Scholar 

  4. Costa E, Usall J, Teixidó N, Delgado J, Viñas I (2002) Water activity, temperature, and pH effects on growth of the biocontrol agent Pantoea agglomerans CPA-2. Can J Microbiol 48:1082–1088

    Article  CAS  PubMed  Google Scholar 

  5. Crespo-Sempere A, Estiarte N, Marín S, Sanchis V, Ramos AJ (2013) Propidium monoazide combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products. Int J Food Microbiol 165(3):214–220

    Article  CAS  PubMed  Google Scholar 

  6. Dallyn H, Fox A (1980) Spoilage of material of reduced water activity by xerophilic fungi. In: Gould GH, Corry JEL (eds) Society of applied bacteriology technical series. Academic Press Ltd., London, pp 129–139

    Google Scholar 

  7. Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli MH (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29

    Article  Google Scholar 

  8. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytophathol 44:489–509

    Article  CAS  Google Scholar 

  9. Gotor-Vila A, Teixidó N, Di Francesco A, Usall J, Ugolini L, Torres R, Mari M (2017) Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol 64:219–225

    Article  CAS  PubMed  Google Scholar 

  10. Gotor-Vila A, Teixidó N, Usall J, Dashevskaya S, Torres R (2016) Development of a SCAR marker and a strain-specific genomic marker for the detection of the biocontrol agent strain CPA-8 Bacillus amyloliquefaciens (formerly B. subtilis). Ann Appl Biol 169:248–256

    Article  CAS  Google Scholar 

  11. Hansen BM, Hendriksen NB (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol 67(1):185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadaikunnan S, Rejiniemon TS, Khaled JM, Alharbi NS, Mothana R (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar TDK, Murali HS, Batra HV (2010) Multiplex PCR assay for the detection of enterotoxic Bacillus cereus group strains and its application in food matrices. Indian J Microbiol 50(2):165–171

    Article  CAS  Google Scholar 

  14. Lindbäck T, Fagerlund A, Rødland MS, Granum PE (2004) Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:3959–3967

    Article  PubMed  Google Scholar 

  15. López AC, Alippi AM (2010) Enterotoxigenic gene profiles of Bacillus cereus and Bacillus megaterium isolates recovered from honey. Rev Argent Microbiol 42:216–225

    PubMed  Google Scholar 

  16. Loshon CA, Wahome PG, Maciejewski MW, Setlow P (2006) Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance. J Bacteriol 188(8):3153–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mari M, Torres R, Casalini L, Lamarca N, Mandrin JF, Lichou J, Larena I, De Cal MA, Melgarejo P, Usall J (2007) Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. J Sci Food Agric 87(7):1271–1277

    Article  CAS  Google Scholar 

  18. Medina A, Magan N (2010) Comparisons of water activity and temperature impacts on growth of Fusarium langsethiae strains from northern Europe on oat-based media. Int J Food Microbiol 142(3):365–369

    Article  CAS  PubMed  Google Scholar 

  19. Mossel DAA, Corry JEL, Struijk CB, Baird RM (1995) Essentials of the microbiology of foods: a textbook for advanced studies. Wiley, New York

    Google Scholar 

  20. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikam C, Ohba M, Assavanig A, Panbangred W (2008) Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol 121(3):352–356

    Article  CAS  PubMed  Google Scholar 

  21. Nunes C (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133(1):181–196

    Article  Google Scholar 

  22. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochimica Et Biophysica Acta-Biomembranes 1717(2):67–88

    Article  CAS  Google Scholar 

  23. Phelps RJ, McKillip JL (2002) Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Appl Environ Microbiol 68(6):3147–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149(1):1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott WJ (1957) Water relations of food spoilage microorganisms. Adv Food Res 7:83–127

    Article  CAS  Google Scholar 

  26. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50(3):205–221

    Article  Google Scholar 

  27. Sisquella M, Casals C, Vinas I, Teixido N, Usall J (2013) Combination of peracetic acid and hot water treatment to control postharvest brown rot on peaches and nectarines. Postharvest Biol Technol 83:1–8

    Article  CAS  Google Scholar 

  28. Teixidó N, Cañamás TP, Usall J, Torres R, Magan N, Viñas I (2005) Accumulation of the compatible solutes, glycine–betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Lett Appl Microbiol 41(3):248–252

    Article  PubMed  Google Scholar 

  29. Teixidó N, Torres R, Abadias M, Usall J (2011) Biological control of postharvest diseases in fruit and vegetables. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage. Woodhead Publishing Limited, Cambridge, pp 364–402

    Chapter  Google Scholar 

  30. Teixidó N, Viñas I, Usall J, Sanchis V, Magan N (1998) Ecophysiological responses of the biocontrol yeast Candida sake to water, temperature and pH stress. J Appl Microbiol 84(2):192–200

    Article  Google Scholar 

  31. Usall J, Casals C, Sisquella M, Palou L, De Cal A (2015) Alternative technologies to control postharvest diseases of stone fruits. Stewart Postharvest Rev 11(4):1–6

    Article  Google Scholar 

  32. Yánez-Mendizábal V, Usall J, Viñas I, Casals C, Marín S, Solsona C, Teixidó N (2011) Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Sci Technol 21(4):409–426

    Article  Google Scholar 

  33. Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N (2012) Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Control 60(3):280–289

    Article  Google Scholar 

  34. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132(4):609–619

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the European project BIOCOMES FP7-612713 and by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya for the PhD Grant 2014-FI-B00367 (Amparo M. Gotor Vila). The authors also thank CERCA Program (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Teixidó.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotor-Vila, A., Teixidó, N., Sisquella, M. et al. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes. Curr Microbiol 74, 1089–1099 (2017). https://doi.org/10.1007/s00284-017-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1289-8

Navigation