Skip to main content
Log in

Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas putida (NBAII-RPF9) was identified as an abiotic stress tolerant bacterium capable of growing at 45 °C as well as in 1 M NaCl. The proteins expressed by this bacterium when subjected to these two stresses were analyzed by 2D gel and MALDI-TOF/MS. Two parameters viz., heat/saline shock (20 min at 45 °C/1 M solid NaCl added at mid log phase and incubated for 1 h) and heat/saline tolerance (24 h growth at 45 °C/in 1 M NaCl) were studied. Under heat shock 13 upregulated proteins and 1 downregulated protein were identified and under tolerance 6 upregulated proteins were identified. GroES and GroEL proteins were expressed under both tolerance and shock. Under saline shock 11 upregulated proteins were identified whereas under saline tolerance 6 upregulated proteins were identified and all these proteins had pI between 3 and 10 with molecular weights ranging from 14.3 to 97 kDa. Aspartate carbamoyltransferase was common under both the saline conditions studied. The analysis revealed involvement of heat stress responsive molecular chaperones and membrane proteins during heat stress. During salt stress, proteins involved in metabolic processes were found to be upregulated to favor growth and adaptation of the bacterium. Heat shock chaperones viz., DnaK and DnaJ were expressed under both saline and heat stress. This is the first report of protein profile obtained from a single bacterium under saline and heat stress and the studies reveal the complex mechanisms adapted by the organism to survive under high temperature or saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ali SkZ, Sandhya V, Grover M, Kishore N, Rao VL, Venkateshwarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  2. Anderson KS, Johnson KA (1990) Kinetic and structural analysis of enzyme intermediates: lessons from EPSP synthase. Chem Rev 90:1131–1149

    Article  CAS  Google Scholar 

  3. Borukhov S, Polyakov A, Nikiforov V, Goldfarb A (1992) GreA protein: a transcription elongation factor from Escherichia coli. Proc Natl Acad Sci USA 89:8899–8902

    Article  PubMed  CAS  Google Scholar 

  4. Bouffartigues E, Gicquel G, Bazire A, Fito-Boncompte L, Maillot O, Groboillot A, Poc-Duclairoir A, Orange N, Feuilloley M, Dufour A, Chevalier S (2011) The major outer membrane protein OprF is required for rhamnolipid production in Pseudomonas aeruginosa. J Bacteriol Parasitol 2:5–10

    Article  Google Scholar 

  5. Brackley KI, Grantham J (2009) Activities of the chaperonin containing TCP-1 (CCT): implication for cell progression and cytoskeletal organization. Cell Stress Chaperon 14:23–31

    Article  CAS  Google Scholar 

  6. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  7. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156–176

    Article  PubMed  Google Scholar 

  8. Chen S, Wu Y, Huang H, Wang C (2012) Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS ONE 7:1–7

    CAS  Google Scholar 

  9. Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408

    Article  PubMed  CAS  Google Scholar 

  10. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  CAS  Google Scholar 

  11. Doublet P, Grangeasse C, Obadia B, Vaganay E, Cozzone AJ (2002) Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli Cells. J Biol Chem 277:37339–37348

    Article  PubMed  CAS  Google Scholar 

  12. Duche O, Tremoulet F, Glaser P, Labadie J (2002) Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 68:1491–1498

    Article  PubMed  CAS  Google Scholar 

  13. Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188:240–248

    Article  PubMed  CAS  Google Scholar 

  14. Jain S, Rani A, Marla SS, Goel R (2010) Differential proteomic analysis of psychrotolerant Pseudomonas putida 710A and alkaliphilic Pseudomonas monteilli 97AN for cadmium stress. Int J Biol Med Res 4:234–241

    Google Scholar 

  15. Jaouen T, De E, Chevalier S, Orange N (2004) Pore size dependence on growth temperature is a common characteristic of the major outer membrane protein OprF in psychrotrophic and mesophilic Pseudomonas species. Appl Environ Microbiol 70:6665–6669

    Article  PubMed  CAS  Google Scholar 

  16. Keith LMW, Patridge JE, Bender CL (1999) DnaK and the heat stress response of Pseudomonas syringae pv. glycinea. Mol Plant Microbe Interact 12:563–574

    Article  PubMed  CAS  Google Scholar 

  17. Krell A, Beszsteri B, Dieckmann G, Glockner G, Valentin K, Mock T (2008) A new class of ice binding proteins discovered in a salt stress induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol 43:423–433

    Article  CAS  Google Scholar 

  18. Lacerda CMR, Reardon KF (2009) Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic 8:75–87

    Article  PubMed  CAS  Google Scholar 

  19. Lay JO (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194

    Article  PubMed  CAS  Google Scholar 

  20. Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S (2002) The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148:2449–2456

    PubMed  CAS  Google Scholar 

  21. Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the antarctic archaeon, Methanococcoides burtonii. J Mol Biol 297:553–567

    Article  PubMed  CAS  Google Scholar 

  22. Luders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7:36

    Article  PubMed  Google Scholar 

  23. Luecke H, Quiocho FA (1990) High specificity of phosphate transport system determined by hydrogen bonds. Nature 347:402–406

    Article  PubMed  CAS  Google Scholar 

  24. Macfarlane ELA, Kwasnika A, Ochs MM, Hancock REW (1999) PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305–316

    Article  PubMed  CAS  Google Scholar 

  25. Mayer MP, Bukau B (1999) Molecular chaperones: the busy life of Hsp90. Curr Biol 9:R322–R325

    Article  PubMed  CAS  Google Scholar 

  26. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    Article  PubMed  CAS  Google Scholar 

  27. Park Y, Song E, Kim Y, Noh T, Kang H, Lee B (2007) Analysis of virulence and growth of a purine auxotrophic mutant of Xanthomonas oryzae pathovar oryzae. FEMS Microbiol Lett 276:55–59

    Article  PubMed  CAS  Google Scholar 

  28. Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    Article  CAS  Google Scholar 

  29. Purcarea C, Herve G, Ladjimi MM, Cunin R (1997) Aspartate Transcarbamylase from the deep-Sea hyperthermophilic Archaeon Pyrococcus abyssi: genetic organization, structure, and expression in Escherichia coli. J Bacteriol 179:4143–4157

    PubMed  CAS  Google Scholar 

  30. Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos T, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–358

    Article  PubMed  CAS  Google Scholar 

  31. Renzone G, D’ambrosio C, Arena S, Rullo R, Ledda L, Ferrara L, Scaloni A (2005) Differential proteomic analysis in the study of prokaryotes stress resistance. Ann Ist Super Sanità 41:459–468

    PubMed  Google Scholar 

  32. Richter G, Fischer M, Krieger C, Eberhardt S, Luttgen H, Gerstenschlager I, Bacher A (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase–reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179:2022–2028

    PubMed  CAS  Google Scholar 

  33. Rosen R, Ron EZ (2002) Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21:244–265

    Article  PubMed  CAS  Google Scholar 

  34. Saxena IM Jr, Brown RM, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424

    PubMed  CAS  Google Scholar 

  35. Schroder H, Langer T, Hartl F, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144

    PubMed  CAS  Google Scholar 

  36. Schyns G, Potot S, Geng Y, Barbosa TM, Henriques A, Perkins JB (2005) Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J Bacteriol 187:8127–8136

    Article  PubMed  CAS  Google Scholar 

  37. Shukla HD (2006) Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 4:6–17

    Article  PubMed  Google Scholar 

  38. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT (2005) Two component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system level analysis. PLoS Biol 3:1770–1788

    Article  CAS  Google Scholar 

  39. Soncini FC, Groisman EA (1996) Two-component regulatory systems can interact to process multiple environmental signals. J Bacteriol 178:6796–6801

    PubMed  CAS  Google Scholar 

  40. Stepnova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S (2007) Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro. J Bacteriol 189:8772–8785

    Article  Google Scholar 

  41. Tricot C, Stalon V, Legrain C (1991) Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways. J Gen Microbiol 137:2911–2918

    Article  PubMed  CAS  Google Scholar 

  42. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Protein Homeostasis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  43. Volker U, Engelmann S, Maul B, Reithdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752

    Article  PubMed  Google Scholar 

  44. Wang J, Zhao C, Meng B, Xie J, Zhou C, Chen X, Zhao K, Shao J, Xue Y, Xu N, Ma Y, Liu S (2007) The proteomic alterations of Thermoanaerobacter tengcongensis cultured at different temperatures. Proteomics 7:1409–1419

    Article  PubMed  CAS  Google Scholar 

  45. Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392

    Article  PubMed  CAS  Google Scholar 

  46. Wugeditsch T, Paiment A, Hocking J, Drummelsmith J, Forrester C, Whitfield C (2001) Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276:2361–2371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The World Bank and Indian Council for Agricultural Research (ICAR) for funding the Research under the National Agricultural Innovation Project (NAIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Rangeshwaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangeshwaran, R., Ashwitha, K., Sivakumar, G. et al. Analysis of Proteins Expressed by an Abiotic Stress Tolerant Pseudomonas putida (NBAII-RPF9) Isolate Under Saline and High Temperature Conditions. Curr Microbiol 67, 659–667 (2013). https://doi.org/10.1007/s00284-013-0416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0416-4

Keywords

Navigation