Skip to main content
Log in

Effect of a Nickel-Tolerant ACC Deaminase-Producing Pseudomonas Strain on Growth of Nontransformed and Transgenic Canola Plants

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Four bacterial strains were isolated from soils at nickel-contaminated sites based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as a sole source of nitrogen. The four isolates were all identified as Pseudomonas putida Biovar B, and subsequent testing revealed that they all exhibited traits previously associated with plant growth promotion (i.e., indoleacetic acid and siderophore production and ACC deaminase activity). These four strains were also tolerant of nickel concentrations of up to 13.2 mM in the culture medium. The strain, HS-2, selected for further characterization, was used in pot experiments to inoculate both nontransformed and transgenic canola plants (expressing a bacterial ACC deaminase gene in its roots). Plants inoculated with the HS-2 strain produced an increase in plant biomass as well as in nickel (Ni) uptake by shoots and roots. The results suggest that this strain is a potential candidate to be used as an inoculant in both phytoremediation protocols and in plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-Shanab RA, Angle JS, Delorme TA et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  2. Bashan Y, de-Bashan LE (2005) Plant growth-promoting bacteria. In: Hillel D (ed) Encyclopedia of soils in the environment. Vol. 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  3. Belimov AA, Safranova VI, Sergeyeva TA et al (2001) Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  4. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45:198–207

    Article  PubMed  CAS  Google Scholar 

  5. Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  6. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  7. Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  PubMed  CAS  Google Scholar 

  8. Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  9. Diels L, De Smet M, Hooyberghs L et al (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12:149–158

    Article  PubMed  CAS  Google Scholar 

  10. Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  CAS  Google Scholar 

  11. Elmayan E, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  PubMed  CAS  Google Scholar 

  12. Farwell AJ, Vesely S, Nero V et al (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  13. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  14. Glick BR, Karaturovíc D, Newell P (1995) A novel procedure for rapid isolation of plant growth-promoting rhizobacteria. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  15. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  PubMed  CAS  Google Scholar 

  16. Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–311

    Article  PubMed  CAS  Google Scholar 

  17. Hontzeas N, Richardson AO, Belimov AA et al (2005) Evidence for horizontal gene transfer (HGT) of ACC deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  PubMed  CAS  Google Scholar 

  18. Idris R, Trifonova R, Puschenreiter M et al (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  19. Ivanov A, Gavriushkin AV, Siunova TV et al (1999) Resistance of certain strains of Pseudomonas bacteria to toxic effect of heavy metal ions. Mikrobiol 68:366–374

    Google Scholar 

  20. King ED, Ward MK, Radney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  21. Mengoni A, Barzanti R, Gonnelli C et al (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    Article  PubMed  CAS  Google Scholar 

  22. Montgomery DC (1991) Design and analysis of experiments. John Wiley and Sons, New York

    Google Scholar 

  23. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  24. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  25. Raskin I, Kumar PBAN, Dushenkov S et al (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  26. Reed MLE, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Van Leeuwenhoek 86:1–25

    Article  Google Scholar 

  27. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  28. Roane TM, Kellog ST (1996) Characterization of microbial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    Article  PubMed  CAS  Google Scholar 

  29. Rodríguez H, Enríquez A, Volfová O (1983) Optimization of culture medium composition for cellulolytic bacteria by mathematical methods. Folia Microbiol 28:163–171

    Article  Google Scholar 

  30. Rodríguez H, González T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Article  Google Scholar 

  31. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  32. Sergeeva E, Shah S, Glick BR (2006) Tolerance of transgenic canola (Brassica napus cv. Westar) expressing a bacterial ACC deaminase gene to high concentrations of salt. World J Microbiol Biotechnol 22:277–282

    Article  CAS  Google Scholar 

  33. Stearns J, Shah S, Greenberg BM et al (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  PubMed  CAS  Google Scholar 

  34. Vargas E, Alvarez AH, Cervantes C (1998) Bacterial systems for expelling toxic metals. Rev Latinoam Microbiol 40:3–71

    Google Scholar 

  35. Weckx J, Vangronsveld J, Clijster H (1993) Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of response In: Pech JC, Latche A, Balaque C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer Academic, Dordrecht, The Netherlands, pp 238–239

    Google Scholar 

  36. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Strategic Grant from the Natural Sciences and Engineering Research Council of Council to B.R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, H., Vessely, S., Shah, S. et al. Effect of a Nickel-Tolerant ACC Deaminase-Producing Pseudomonas Strain on Growth of Nontransformed and Transgenic Canola Plants. Curr Microbiol 57, 170–174 (2008). https://doi.org/10.1007/s00284-008-9181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9181-1

Keywords

Navigation