The Mathematical Intelligencer

, Volume 40, Issue 2, pp 67–75 | Cite as

Mathematics Underfoot: The Formulas That Came to Würzburg from New Haven

Years Ago Jemma Lorenat, Editor



My thanks to Vincent Hart, Ludvik Bass, Peter Jarvis, Gunnar Bartsch, Anja Schlömerkemper, Wolfgang Schlegel, Steve Webb, Robert Grebner, Denise Stevens, and Matthias Reichling for their various inputs and encouragement.


  1. [1]
    Riesz, P. B., The life of Wilhelm Conrad Roentgen, Am. J. Roentgenol. 165 (1995), 1533–1537.CrossRefGoogle Scholar
  2. [2]
    Bracken, A. J., The mystery of the strange formulae, Phys. World (Oct. 2016, p. 22).Google Scholar
  3. [3]
    Schlegel, W., The tale of the tiles, Phys. World (Dec. 2016, p. 21).Google Scholar
  4. [4]
    Nöth, E., sin x und sin y unter den Füssen (Main-Post, Würzburg, July 2, 1971).Google Scholar
  5. [5]
    MATLAB (MathWorks, Natick, MA, 2016).Google Scholar
  6. [6]
    Bartsch, G., Rätselhafte Spuren in Röntgens Labor (einBLICK, Presse-und Öffentlichkartsarbeit, JMU Würzburg), Dec.13, 2016.
  7. [7]
  8. [8]
    Newton, H. A., and Phillips, A. W., On the Transcendental Curves \(\sin y \sin my =a \sin x \sin nx +b\), Trans. Conn. Acad. Arts Sci. 3 (1874–1878), 97–107 (with 24 plates).
  9. [9]
    Phillips, Andrew W., Biography: Hubert Anson Newton, Amer. Math. Monthly 4 (no. 3) (1897), 67–71.Google Scholar
  10. [10]
    Gibbs, J. Willard, Memoir of Hubert Anson Newton, 1830–1896, Nat. Acad. Sc. USA.Google Scholar
  11. [11]
    Wright, H. P., Early ideals and their realization, in Andrew Wheeler Phillips (Tuttle, Morehouse & Taylor, New Haven, 1915), pp. 5–13.;view=1up;seq=13
  12. [12]
    Roberts, S., On three-bar motion in plane space, Proc. Lond. Math. Soc. s1–7 (1875), 15–23.Google Scholar
  13. [13]
    Cayley, A., On three-bar motion, Proc. Lond. Math. Soc. s1–7 (1876), 136–166.Google Scholar
  14. [14]
    Phillips, A. W., and Beebe, W., Graphic Algebra, or Geometrical Interpretation of the Theory of Equations of One Unknown Quantity (H. Holt, New York, 1904).Google Scholar
  15. [15]
    Our Book Shelf, Nature 13 (no. 338) (1876), 483.Google Scholar
  16. [16]
    Miscellany, Popular Science Monthly 8 (1875), 121.Google Scholar
  17. [17]
    Newton, H. A., Algebraic curves expressed in trigonometric equations, AAAS, 24th Meeting, Detroit, Aug. 11, 1875, Amer. Chemist (Sept. 1875), 103.
  18. [18]
    Phillips, A. W., On certain transcendental curves, AAAS, 24th Meeting, Detroit, Aug. 11, 1875, Amer. Chemist (Sept. 1875), 103.
  19. [19]
    Goodwin, H. M. (Transl. and Ed.), Biographical sketch, in The Fundamental Laws of Electrolytic Conduction (Harper & Bros., NY, 1899), pp. 92–93.
  20. [20]
    Kohlrausch, F. W. G., Leitfaden der Praktische Physik (B. G. Teubner, Leipzig, 1870); Praktische Physik, 24th Ed. (Springer Vieweg, Berlin, 1996).Google Scholar
  21. [21]
    Strouhal, V., Über eine besondere Art der Tonerregung, Ann. d. Phys. 241(10) (1878), 216–251.CrossRefGoogle Scholar
  22. [22]
    Sarpkaya, T., Vortex-induced oscillations: a selective review, J. Appl. Mech. 46 (1979), 241–258.CrossRefGoogle Scholar
  23. [23]
    Novák, V., Čeněk Strouhal, Časopis pro pěstování mathematiky a fysiky (J. for the Promotion of Mathematics and Physics) 39 (1910), 369–383.Google Scholar
  24. [24]
    Gauss, C. F., Disquisitiones generales circa superficies curvas (Typis Dieterichianis, Göttingen, 1828).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations