Advertisement

Seminars in Immunopathology

, Volume 40, Issue 4, pp 379–392 | Cite as

ILC2s in infectious diseases and organ-specific fibrosis

  • Markus Kindermann
  • Lisa Knipfer
  • Imke Atreya
  • Stefan Wirtz
Review

Abstract

Type 2 immune responses evolved to provide host protection against parasitic infections and to support the repair of infection-induced tissue injury. However, persistent chronic organ damage can result in dysregulated production of critical type 2 cytokines supporting tissue remodeling and fibrosis development. Recently, group 2 innate lymphoid cells (ILC2s) were newly described as central innate mediators of type 2 responses. In particular, by secretion of the cytokines IL-5, IL-9, and IL-13 and the growth factor amphiregulin in response to the release of tissue-derived alarmins, ILC2s have been shown to substantially contribute to both the dismissal of metazoan parasites and the repair of infection-dependent or sterile tissue damage. Conversely, cytokine production by ILC2s emerged as a driving force for tissue remodeling and excessive fibrosis in several organ systems including the lung, liver, and skin. In this review, we discuss how ILC2s are specifically implicated in the body’s immune response to different pathogenic infections and how dysregulated ILC2s may promote organ-specific fibrosis.

Keywords

Group 2 innate lymphoid cells ILC2s Infectious diseases Tissue repair Fibrosis 

Notes

Funding information

This work has received funding from the German Research Foundation (DFG) within CRC1181 (A08), the clinical research unit KFO257, the GK1660 and the SPP1656 (Intestinal microbiota). Further support was given by the Interdisciplinary Center for Clinical Research (IZKF) of the University Erlangen-Nuremberg (A75).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Diefenbach A, Colonna M, Koyasu S (2014) Development, differentiation, and diversity of innate lymphoid cells. Immunity 41(3):354–365.  https://doi.org/10.1016/j.immuni.2014.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    McKenzie AN, Spits H, Eberl G (2014) Innate lymphoid cells in inflammation and immunity. Immunity 41(3):366–374.  https://doi.org/10.1016/j.immuni.2014.09.006 PubMedCrossRefGoogle Scholar
  3. 3.
    Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–995PubMedCrossRefGoogle Scholar
  4. 4.
    Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, Brieland JK, Zurawski SM, Chapman RW, Zurawski G, Coffman RL (2002) New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 169(1):443–453PubMedCrossRefGoogle Scholar
  5. 5.
    Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203(4):1105–1116.  https://doi.org/10.1084/jem.20051615 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544.  https://doi.org/10.1038/nature08636 PubMedCrossRefGoogle Scholar
  7. 7.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370.  https://doi.org/10.1038/nature08900 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 107(25):11489–11494.  https://doi.org/10.1073/pnas.1003988107 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149.  https://doi.org/10.1038/nri3365 PubMedCrossRefGoogle Scholar
  10. 10.
    Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12(11):1045–1054.  https://doi.org/10.1031/ni.2131 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerl D, Seddon B, MacDonald AS, McKenzie A, Wilson MS (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9(6):1407–1417.  https://doi.org/10.1038/mi.2016.4 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Seehus CR, Kadavallore A, Torre B, Yeckes AR, Wang Y, Tang J, Kaye J (2017) Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat Commun 8(1):1900.  https://doi.org/10.1038/s41467-017-02023-z PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F (2012) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37(3):463–474.  https://doi.org/10.1016/j.immuni.2012.06.012 PubMedCrossRefGoogle Scholar
  14. 14.
    Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN (2012) Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13(3):229–236.  https://doi.org/10.1038/ni.2208 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648.  https://doi.org/10.1016/j.immuni.2012.06.020 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Spooner CJ, Lesch J, Yan D, Khan AA, Abbas A, Ramirez-Carrozzi V, Zhou M, Soriano R, Eastham-Anderson J, Diehl L, Lee WP, Modrusan Z, Pappu R, Xu M, DeVoss J, Singh H (2013) Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol 14(12):1229–1236.  https://doi.org/10.1038/ni.2743 PubMedCrossRefGoogle Scholar
  17. 17.
    Yu Y, Wang C, Clare S, Wang J, Lee SC, Brandt C, Burke S, Lu L, He D, Jenkins NA, Copeland NG, Dougan G, Liu P (2015) The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med 212(6):865–874.  https://doi.org/10.1084/jem.20142318 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, Belz G, Liu P, Fallon PG, McKenzie AN (2015) Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med 212(6):875–882.  https://doi.org/10.1084/jem.20142224 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, Van Voorhees AS, Comeau MR, Artis D (2013) TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5(170):170ra116.  https://doi.org/10.1126/scitranslmed.3005374 CrossRefGoogle Scholar
  20. 20.
    Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H, Klenerman P, Ogg G (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133(4):1184–1194.  https://doi.org/10.1016/j.jaci.2013.10.056 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132(1):205–213.  https://doi.org/10.1016/j.jaci.2013.03.048 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, Monticelli LA, Moriyama S, Putzel GG, Rakhilin N, Shen X, Kostenis E, Konig GM, Senda T, Carpenter D, Farber DL, Artis D (2017) The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549(7671):282–286.  https://doi.org/10.1038/nature23676 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais NL, Harris N, Veiga-Fernandes H (2017) Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549(7671):277–281.  https://doi.org/10.1038/nature23469 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D, Haas BJ, Tickle TL, Trombetta JJ, Baral P, Klose CSN, Mahlakoiv T, Artis D, Rozenblatt-Rosen O, Chiu IM, Levy BD, Kowalczyk MS, Regev A, Kuchroo VK (2017) The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549(7672):351–356.  https://doi.org/10.1038/nature24029 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O (2015) ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42(3):538–551.  https://doi.org/10.1016/j.immuni.2015.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Paclik D, Stehle C, Lahmann A, Hutloff A, Romagnani C (2015) ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur J Immunol 45(10):2766–2772.  https://doi.org/10.1002/eji.201545635 PubMedCrossRefGoogle Scholar
  27. 27.
    Duerr CU, McCarthy CD, Mindt BC, Rubio M, Meli AP, Pothlichet J, Eva MM, Gauchat JF, Qureshi ST, Mazer BD, Mossman KL, Malo D, Gamero AM, Vidal SM, King IL, Sarfati M, Fritz JH (2016) Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat Immunol 17(1):65–75.  https://doi.org/10.1038/ni.3308 PubMedCrossRefGoogle Scholar
  28. 28.
    Moro K, Kabata H, Tanabe M, Koga S, Takeno N, Mochizuki M, Fukunaga K, Asano K, Betsuyaku T, Koyasu S (2016) Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17(1):76–86.  https://doi.org/10.1038/ni.3309 PubMedCrossRefGoogle Scholar
  29. 29.
    McHedlidze T, Kindermann M, Neves AT, Voehringer D, Neurath MF, Wirtz S (2016) IL-27 suppresses type 2 immune responses in vivo via direct effects on group 2 innate lymphoid cells. Mucosal Immunol 9(6):1384–1394.  https://doi.org/10.1038/mi.2016.20 PubMedCrossRefGoogle Scholar
  30. 30.
    Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, Fallon PG, Ogg GS (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950.  https://doi.org/10.1084/jem.20130351 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S (2017) PD-1 regulates KLRG1(+) group 2 innate lymphoid cells. J Exp Med 214(6):1663–1678.  https://doi.org/10.1084/jem.20161653 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Filbey K, Bouchery T, Le Gros G (2017) The role of ILC2 in hookworm infection. Parasite Immunol 40.  https://doi.org/10.1111/pim.12429
  33. 33.
    Mukai K, Karasuyama H, Kabashima K, Kubo M, Galli SJ (2017) Differences in the importance of mast cells, basophils, IgE, and IgG versus that of CD4(+) T cells and ILC2 cells in primary and secondary immunity to Strongyloides venezuelensis. Infect Immun 85(5):e00053–e00017.  https://doi.org/10.1128/IAI.00053-17 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hung LY, Lewkowich IP, Dawson LA, Downey J, Yang Y, Smith DE, Herbert DR (2013) IL-33 drives biphasic IL-13 production for noncanonical type 2 immunity against hookworms. Proc Natl Acad Sci U S A 110(1):282–287.  https://doi.org/10.1073/pnas.1206587110 PubMedCrossRefGoogle Scholar
  35. 35.
    Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, Ogg GS, Fallon PG, McKenzie AN (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41(2):283–295.  https://doi.org/10.1016/j.immuni.2014.06.016 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Angkasekwinai P, Sodthawon W, Jeerawattanawart S, Hansakon A, Pattanapanyasat K, Wang YH (2017) ILC2s activated by IL-25 promote antigen-specific Th2 and Th9 functions that contribute to the control of Trichinella spiralis infection. PLoS One 12(9):e0184684.  https://doi.org/10.1371/journal.pone.0184684 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerl D, Seddon B, MacDonald AS, McKenzie A, Wilson MS (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–1417.  https://doi.org/10.1038/mi.2016.4 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529(7585):221–225.  https://doi.org/10.1038/nature16161 CrossRefGoogle Scholar
  39. 39.
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529(7585):226–230.  https://doi.org/10.1038/nature16527 PubMedCrossRefGoogle Scholar
  40. 40.
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279):1329–1333.  https://doi.org/10.1126/science.aaf1648 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A (2017) A single-cell survey of the small intestinal epithelium. Nature 551(7680):333–339.  https://doi.org/10.1038/nature24489 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shimokawa C, Kanaya T, Hachisuka M, Ishiwata K, Hisaeda H, Kurashima Y, Kiyono H, Yoshimoto T, Kaisho T, Ohno H (2017) Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity 46(5):863–874 e864.  https://doi.org/10.1016/j.immuni.2017.04.017 PubMedCrossRefGoogle Scholar
  43. 43.
    Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC, Gregory WF, Smyth DJ, Toivakka M, Kemter AM, le Bihan T, Wear M, Hoving D, Filbey KJ, Hewitson JP, Henderson H, Gonzalez-Ciscar A, Errington C, Vermeren S, Astier AL, Wallace WA, Schwarze J, Ivens AC, Maizels RM, McSorley HJ (2017) HpARI protein secreted by a helminth parasite suppresses interleukin-33. Immunity 47 (4):739–751 e735. doi: https://doi.org/10.1016/j.immuni.2017.09.015
  44. 44.
    Zaiss DMW, Gause WC, Osborne LC, Artis D (2015) Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 42(2):216–226.  https://doi.org/10.1016/j.immuni.2015.01.020 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rath M, Muller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532.  https://doi.org/10.3389/fimmu.2014.00532 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Monticelli LA, Buck MD, Flamar AL, Saenz SA, Tait Wojno ED, Yudanin NA, Osborne LC, Hepworth MR, Tran SV, Rodewald HR, Shah H, Cross JR, Diamond JM, Cantu E, Christie JD, Pearce EL, Artis D (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17(6):656–665.  https://doi.org/10.1038/ni.3421 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965.  https://doi.org/10.1084/jem.20130071 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Daly CM, Mayrhofer G, Dent LA (1999) Trapping and immobilization of Nippostrongylus brasiliensis larvae at the site of inoculation in primary infections of interleukin-5 transgenic mice. Infect Immun 67(10):5315–5323PubMedPubMedCentralGoogle Scholar
  49. 49.
    Rak GD, Osborne LC, Siracusa MC, Kim BS, Wang K, Bayat A, Artis D, Volk SW (2016) IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. The Journal of investigative dermatology 136(2):487–496.  https://doi.org/10.1038/JID.2015.406 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12(7):631–638.  https://doi.org/10.1038/ni.2045 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gorski SA, Hahn YS, Braciale TJ (2013) Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 9(9):e1003615.  https://doi.org/10.1371/journal.ppat.1003615 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, Erjefalt JS, Kolbeck R, Humbles AA (2016) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17(6):626–635.  https://doi.org/10.1038/ni.3443 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jha A, Jarvis H, Fraser C, Openshaw PJM (2016) Respiratory syncytial virus. In: Hui DS, Rossi GA, Johnston SL (eds) SARS, MERS and other viral lung infections. Wellcome Trust-Funded Monographs and Book Chapters, SheffieldGoogle Scholar
  54. 54.
    Stier MT, Bloodworth MH, Toki S, Newcomb DC, Goleniewska K, Boyd KL, Quitalig M, Hotard AL, Moore ML, Hartert TV, Zhou B, McKenzie AN, Peebles RS Jr (2016) Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol 138(3):814–824 e811.  https://doi.org/10.1016/j.jaci.2016.01.050 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zeng S, Wu J, Liu J, Qi F, Liu B (2015) IL-33 receptor (ST2) signalling is important for regulation of Th2-mediated airway inflammation in a murine model of acute respiratory syncytial virus infection. Scand J Immunol 81(6):494–501.  https://doi.org/10.1111/sji.12284 PubMedCrossRefGoogle Scholar
  56. 56.
    Saravia J, You D, Shrestha B, Jaligama S, Siefker D, Lee GI, Harding JN, Jones TL, Rovnaghi C, Bagga B, DeVincenzo JP, Cormier SA (2015) Respiratory syncytial virus disease is mediated by age-variable IL-33. PLoS Pathog 11(10):e1005217.  https://doi.org/10.1371/journal.ppat.1005217 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Coleman L, Laing IA, Bosco A (2016) Rhinovirus-induced asthma exacerbations and risk populations. Curr Opin Allergy Clin Immunol 16(2):179–185.  https://doi.org/10.1097/ACI.0000000000000245 PubMedCrossRefGoogle Scholar
  58. 58.
    Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12(11):1055–1062.  https://doi.org/10.1038/ni.2104 PubMedCrossRefGoogle Scholar
  59. 59.
    Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q, Sajjan US, Hershenson MB (2014) Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol 134(2):429–439.  https://doi.org/10.1016/j.jaci.2014.04.020 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, Jerico D-R, Telcian AG, Nikonova A, Zhu J, Aniscenko J, Gogsadze L, Bakhsoliani E, Traub S, Dhariwal J, Porter J, Hunt D, Hunt T, Hunt T, Stanciu LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papadopoulos NG, Akdis CA, Westwick J, Edwards MJ, Cousins DJ, Walton RP, Johnston SL (2014) IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 190(12):1373–1382.  https://doi.org/10.1164/rccm.201406-1039OC PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Han M, Rajput C, Hong JY, Lei J, Hinde JL, Wu Q, Bentley JK, Hershenson MB (2017) The innate cytokines IL-25, IL-33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus-infected immature mice. J Immunol 199(4):1308–1318.  https://doi.org/10.4049/jimmunol.1700216 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, Warszawska JM, Jolin H, Mesteri I, McKenzie ANJ, Knapp S (2017) First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep 18(8):1893–1905.  https://doi.org/10.1016/j.celrep.2017.01.071 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Monin L, Griffiths KL, Lam WY, Gopal R, Kang DD, Ahmed M, Rajamanickam A, Cruz-Lagunas A, Zuniga J, Babu S, Kolls JK, Mitreva M, Rosa BA, Ramos-Payan R, Morrison TE, Murray PJ, Rangel-Moreno J, Pearce EJ, Khader SA (2015) Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. J Clin Invest 125(12):4699–4713.  https://doi.org/10.1172/JCI77378 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Blanco JL, Garcia ME (2008) Immune response to fungal infections. Vet Immunol Immunopathol 125(1–2):47–70.  https://doi.org/10.1016/j.vetimm.2008.04.020 PubMedCrossRefGoogle Scholar
  65. 65.
    Doherty TA, Khorram N, Chang JE, Kim HK, Rosenthal P, Croft M, Broide DH (2012) STAT6 regulates natural helper cell proliferation during lung inflammation initiated by Alternaria. American journal of physiology Lung cellular and molecular physiology 303(7):L577–L588.  https://doi.org/10.1152/ajplung.00174.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Van Dyken SJ, Mohapatra A, Nussbaum JC, Molofsky AB, Thornton EE, Ziegler SF, McKenzie AN, Krummel MF, Liang HE, Locksley RM (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and gammadelta T cells. Immunity 40(3):414–424.  https://doi.org/10.1016/j.immuni.2014.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wiesner DL, Smith KD, Kashem SW, Bohjanen PR, Nielsen K (2017) Different lymphocyte populations direct dichotomous eosinophil or neutrophil responses to pulmonary Cryptococcus infection. J Immunol 198(4):1627–1637.  https://doi.org/10.4049/jimmunol.1600821 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Piehler D, Eschke M, Schulze B, Protschka M, Muller U, Grahnert A, Richter T, Heyen L, Kohler G, Brombacher F, Alber G (2016) The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation. Mucosal Immunol 9(4):937–949.  https://doi.org/10.1038/mi.2015.106 PubMedCrossRefGoogle Scholar
  69. 69.
    Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST (2013) IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J Immunol 191(5):2503–2513.  https://doi.org/10.4049/jimmunol.1300426 PubMedCrossRefGoogle Scholar
  70. 70.
    Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R (2010) The immunology of fibrosis: innate and adaptive responses. Trends Immunol 31(3):110–119.  https://doi.org/10.1016/j.it.2009.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594.  https://doi.org/10.1038/nri1412 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040.  https://doi.org/10.1038/nm.2807 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Meng X-M, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10:493–503.  https://doi.org/10.1038/nrneph.2014.114 PubMedCrossRefGoogle Scholar
  74. 74.
    Gieseck Iii RL, Wilson MS, Wynn TA (2017) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76.  https://doi.org/10.1038/nri.2017.90 CrossRefGoogle Scholar
  75. 75.
    Meng X, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology 12:325–338.  https://doi.org/10.1038/nrneph.2016.48 PubMedCrossRefGoogle Scholar
  76. 76.
    Gause WC, Wynn TA, Allen JE (2013) Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol 13:607–614.  https://doi.org/10.1038/nri3476 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43 (1):29–40. doi: https://doi.org/10.1016/j.immuni.2015.07.007
  78. 78.
    Bellini A, Marini MA, Bianchetti L, Barczyk M, Schmidt M, Mattoli S (2012) Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol 5(2):140–149.  https://doi.org/10.1038/mi.2011.60 PubMedCrossRefGoogle Scholar
  79. 79.
    Kolodsick JE, Toews GB, Jakubzick C, Hogaboam C, Moore TA, McKenzie A, Wilke CA, Chrisman CJ, Moore BB (2004) Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol 172(7):4068–4076PubMedCrossRefGoogle Scholar
  80. 80.
    Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103(6):779–788.  https://doi.org/10.1172/JCI5909 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S, Wirtz S (2013) Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39(2):357–371.  https://doi.org/10.1016/j.immuni.2013.07.018 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104(6):777–785.  https://doi.org/10.1172/JCI7325 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN (2000) Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 164(5):2585–2591PubMedCrossRefGoogle Scholar
  84. 84.
    Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CS, Whiting CV (2012) IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 7(12):e52332.  https://doi.org/10.1371/journal.pone.0052332 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455.  https://doi.org/10.1038/nature12034 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194(6):809–821PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Han Y, Chen Y, Liu X, Zhang J, Su H, Wen H, Li W, Yao X (2017) Efficacy and safety of dupilumab for the treatment of adult atopic dermatitis: a meta-analysis of randomized clinical trials. J Allergy Clin Immunol 140(3):888–891 e886.  https://doi.org/10.1016/j.jaci.2017.04.015 PubMedCrossRefGoogle Scholar
  88. 88.
    Parker JM, Glaspole IN, Lancaster LH, Haddad TJ, She D, Roseti SL, Fiening JP, Grant EP, Kell CM, Flaherty KR (2017) A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 197:94–103.  https://doi.org/10.1164/rccm.201704-0784OC CrossRefGoogle Scholar
  89. 89.
    Aceves SS (2014) Remodeling and fibrosis in chronic eosinophil inflammation. Dig Dis 32(1–2):15–21.  https://doi.org/10.1159/000357004 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A 112(34):10762–10767.  https://doi.org/10.1073/pnas.1509070112 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA, Lee CG (2012) Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-beta-induced pulmonary fibrosis. J Biol Chem 287(50):41991–42000.  https://doi.org/10.1074/jbc.M112.356824 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Perugorria MJ, Latasa MU, Nicou A, Cartagena-Lirola H, Castillo J, Goni S, Vespasiani-Gentilucci U, Zagami MG, Lotersztajn S, Prieto J, Berasain C, Avila MA (2008) The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology 48(4):1251–1261.  https://doi.org/10.1002/hep.22437 PubMedCrossRefGoogle Scholar
  93. 93.
    Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, Voehringer D, McKenzie AN, Donnelly SC, Fallon PG (2014) IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A 111 (1):367–372. doi: https://doi.org/10.1073/pnas.1315854111
  94. 94.
    Yao X, Wang W, Li Y, Lv Z, Guo R, Corrigan CJ, Ding G, Huang K, Sun Y, Ying S (2015) Characteristics of IL-25 and allergen-induced airway fibrosis in a murine model of asthma. Respirology 20(5):730–738.  https://doi.org/10.1111/resp.12546 PubMedCrossRefGoogle Scholar
  95. 95.
    Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY, McSharry C, Xu D (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 134(6):1422–1432 e1411.  https://doi.org/10.1016/j.jaci.2014.05.011 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Drake LY, Kita H (2017) IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 278(1):173–184.  https://doi.org/10.1111/imr.12552 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Roussel L, Farias R, Rousseau S (2013) IL-33 is expressed in epithelia from patients with cystic fibrosis and potentiates neutrophil recruitment. J Allergy Clin Immunol 131(3):913–916.  https://doi.org/10.1016/j.jaci.2012.10.019 PubMedCrossRefGoogle Scholar
  98. 98.
    Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo CE, Paolicelli G, Zelante T, Renauld JC, Bereshchenko O, Sportoletti P, Lucidi V, Russo MC, Colombo C, Fiscarelli E, Lass-Florl C, Majo F, Ricciotti G, Ellemunter H, Ratclif L, Talesa VN, Napolioni V, Romani L (2017) A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun 8:14017.  https://doi.org/10.1038/ncomms14017 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Marvie P, Lisbonne M, L'Helgoualc'h A, Rauch M, Turlin B, Preisser L, Bourd-Boittin K, Theret N, Gascan H, Piquet-Pellorce C, Samson M (2010) Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 14(6B):1726–1739.  https://doi.org/10.1111/j.1582-4934.2009.00801.x PubMedCrossRefGoogle Scholar
  100. 100.
    Liu Y, Meyer C, Muller A, Herweck F, Li Q, Mullenbach R, Mertens PR, Dooley S, Weng HL (2011) IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-beta-independent Smad signaling. J Immunol 187(5):2814–2823.  https://doi.org/10.4049/jimmunol.1003260 PubMedCrossRefGoogle Scholar
  101. 101.
    Forkel M, Berglin L, Kekalainen E, Carlsson A, Svedin E, Michaelsson J, Nagasawa M, Erjefalt JS, Mori M, Flodstrom-Tullberg M, Bergquist A, Ljunggren HG, Westgren M, Lindforss U, Friberg D, Jorns C, Ellis E, Bjorkstrom NK, Mjosberg J (2017) Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers. Eur J Immunol 47(8):1280–1294.  https://doi.org/10.1002/eji.201646890 PubMedCrossRefGoogle Scholar
  102. 102.
    Jeffery HC, McDowell P, Lutz P, Wawman RE, Roberts S, Bagnall C, Birtwistle J, Adams DH, Oo YH (2017) Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS One 12(12):e0188649.  https://doi.org/10.1371/journal.pone.0188649 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, Fazekas de St Groth B, Grimbaldeston MA, Le Gros G, Weninger W (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14 (6):564–573. doi: https://doi.org/10.1038/ni.2584
  104. 104.
    Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, Nakanishi K, Yamanishi K (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A 110(34):13921–13926.  https://doi.org/10.1073/pnas.1307321110 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK, Bourne PA, Pierce RH, Kastelein R, Pflanz S (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184(3):1526–1535.  https://doi.org/10.4049/jimmunol.0903306 PubMedCrossRefGoogle Scholar
  106. 106.
    Jessup HK, Brewer AW, Omori M, Rickel EA, Budelsky AL, Yoon BR, Ziegler SF, Comeau MR (2008) Intradermal administration of thymic stromal lymphopoietin induces a T cell- and eosinophil-dependent systemic Th2 inflammatory response. J Immunol 181(6):4311–4319PubMedCrossRefGoogle Scholar
  107. 107.
    Wohlfahrt T, Usherenko S, Englbrecht M, Dees C, Weber S, Beyer C, Gelse K, Distler O, Schett G, Distler JH, Ramming A (2016) Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann Rheum Dis 75(3):623–626.  https://doi.org/10.1136/annrheumdis-2015-207388 PubMedCrossRefGoogle Scholar
  108. 108.
    Saunders SP, Moran T, Floudas A, Wurlod F, Kaszlikowska A, Salimi M, Quinn EM, Oliphant CJ, Nunez G, McManus R, Hams E, Irvine AD, McKenzie AN, Ogg GS, Fallon PG (2016) Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol 137(2):482–491.  https://doi.org/10.1016/j.jaci.2015.06.045 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Riedel JH, Becker M, Kopp K, Duster M, Brix SR, Meyer-Schwesinger C, Kluth LA, Gnirck AC, Attar M, Krohn S, Fehse B, Stahl RAK, Panzer U, Turner JE (2017) IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. Journal of the American Society of Nephrology : JASN 28(7):2068–2080.  https://doi.org/10.1681/ASN.2016080877 PubMedCrossRefGoogle Scholar
  110. 110.
    Dalmas E, Lehmann FM, Dror E, Wueest S, Thienel C, Borsigova M, Stawiski M, Traunecker E, Lucchini FC, Dapito DH, Kallert SM, Guigas B, Pattou F, Kerr-Conte J, Maechler P, Girard JP, Konrad D, Wolfrum C, Boni-Schnetzler M, Finke D, Donath MY (2017) Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity 47(5):928–942 e927.  https://doi.org/10.1016/j.immuni.2017.10.015 PubMedCrossRefGoogle Scholar
  111. 111.
    Masterson JC, Capocelli KE, Hosford L, Biette K, McNamee EN, de Zoeten EF, Harris R, Fernando SD, Jedlicka P, Protheroe C, Lee JJ, Furuta GT (2015) Eosinophils and IL-33 perpetuate chronic inflammation and fibrosis in a pediatric population with stricturing Crohn’s ileitis. Inflamm Bowel Dis 21(10):2429–2440.  https://doi.org/10.1097/MIB.0000000000000512 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Scharl M, Frei S, Pesch T, Kellermeier S, Arikkat J, Frei P, Fried M, Weber A, Jehle E, Ruhl A, Rogler G (2013) Interleukin-13 and transforming growth factor beta synergise in the pathogenesis of human intestinal fistulae. Gut 62(1):63–72.  https://doi.org/10.1136/gutjnl-2011-300498 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine 1Friedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations