Advertisement

Seminars in Immunopathology

, Volume 40, Issue 3, pp 301–314 | Cite as

Neurogenic inflammation and its role in migraine

  • Roshni Ramachandran
Review

Abstract

The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of “sterile inflammation” in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.

Keywords

Neurogenic inflammation Vasodilation Mast cell degranulation Plasma protein extravasation Meningeal nociceptors Calcitonin gene related peptide (CGRP) Substance P (SP) 

References

  1. 1.
    Stovner L, Hagen K, Jensen R et al (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27:193–210.  https://doi.org/10.1111/j.1468-2982.2007.01288.x PubMedCrossRefGoogle Scholar
  2. 2.
    Vetvik KG, MacGregor EA (2017) Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol 16:76–87.  https://doi.org/10.1016/S1474-4422(16)30293-9 PubMedCrossRefGoogle Scholar
  3. 3.
    Russell MB, Rasmussen BK, Thorvaldsen P, Olesen J (1995) Prevalence and sex-ratio of the subtypes of migraine. Int J Epidemiol 24:612–618PubMedCrossRefGoogle Scholar
  4. 4.
    Olesen J (2016) From ICHD-3 beta to ICHD-3. Cephalalgia 36:401–402.  https://doi.org/10.1177/0333102415596446 PubMedCrossRefGoogle Scholar
  5. 5.
    Antonaci F, Ghiotto N, Wu S et al (2016) Recent advances in migraine therapy. Springerplus 5:637.  https://doi.org/10.1186/s40064-016-2211-8 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Reuter U (2014) Anti-CGRP antibodies: a new approach to migraine prevention. Lancet Neurol 13:857–859.  https://doi.org/10.1016/S1474-4422(14)70126-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Ray BS, Wolff HG (1940) Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg 41:813–856.  https://doi.org/10.1001/archsurg.1940.01210040002001 CrossRefGoogle Scholar
  8. 8.
    McNaughton FL, Feindel WH (1997) Innervation of intracranial structures: a reappraisal. In: Physiological Aspects of Clinical Neurology, Oxford: Blackwell Scientific Publications, England, pp 270–293Google Scholar
  9. 9.
    Procacci P, Maresca M (1999) Referred pain from somatic and visceral structures. Curr Rev Pain 3:96–99.  https://doi.org/10.1007/s11916-999-0032-y CrossRefGoogle Scholar
  10. 10.
    Andres KH, Düring Von M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301PubMedCrossRefGoogle Scholar
  11. 11.
    Arnold F (1831) Der Kopftheil des vegetativen Nervensystems beim Menschen: in anatomischer und physiologischer HinsichtGoogle Scholar
  12. 12.
    Luschka H (1856) Die Altersveränderungen der Zwischenwirbelknorpel. Arch Pathol Anat 9:311–327.  https://doi.org/10.1007/BF01879395 CrossRefGoogle Scholar
  13. 13.
    Grzybowski JL (1931) Innervation de la dure—mére cranienne chez l’homme. Arch Anat Histol Embryol 14:387–428Google Scholar
  14. 14.
    Penfield W (1940) Dural headache and Innervation of the dura mater. Arch Neurol Psychiatr 44:43–75.  https://doi.org/10.1001/archneurpsyc.1940.02280070051003 CrossRefGoogle Scholar
  15. 15.
    Steiger HJ, Meakin CJ (1984) The meningeal representation in the trigeminal ganglion—an experimental study in the cat. Headache 24:305–309PubMedCrossRefGoogle Scholar
  16. 16.
    Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223:46–56.  https://doi.org/10.1002/cne.902230105 PubMedCrossRefGoogle Scholar
  17. 17.
    Uddman R, Hara H, Edvinsson L (1989) Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst 26:69–75PubMedCrossRefGoogle Scholar
  18. 18.
    Strassman AM, Potrebic S, Maciewicz RJ (1994) Anatomical properties of brainstem trigeminal neurons that respond to electrical stimulation of dural blood vessels. J Comp Neurol 346:349–365.  https://doi.org/10.1002/cne.903460304 PubMedCrossRefGoogle Scholar
  19. 19.
    Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982.  https://doi.org/10.1152/jn.1998.79.2.964 PubMedCrossRefGoogle Scholar
  20. 20.
    Strassman AM, Weissner W, Williams M et al (2004) Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 473:364–376.  https://doi.org/10.1002/cne.20106 PubMedCrossRefGoogle Scholar
  21. 21.
    Keller JT, Dimlich RV, Zuccarello M et al (1991) Influence of the sympathetic nervous system as well as trigeminal sensory fibres on rat dural mast cells. Cephalalgia 11:215–221.  https://doi.org/10.1046/j.1468-2982.1991.1105215.x PubMedCrossRefGoogle Scholar
  22. 22.
    Messlinger K, Hanesch U, Baumgärtel M et al (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol 188:219–237PubMedCrossRefGoogle Scholar
  23. 23.
    Levy D, Strassman AM (2002) Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol 88:3021–3031.  https://doi.org/10.1152/jn.00029.2002 PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang X, Strassman AM, Novack V et al (2016) Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors’ responses to stimulation of TRPV1 and TRPA1 channels: are we getting closer to solving this puzzle? Cephalalgia 36:875–886.  https://doi.org/10.1177/0333102416636843 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Schueler M, Messlinger K, Dux M et al (2013) Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 154:1622–1631.  https://doi.org/10.1016/j.pain.2013.04.040 PubMedCrossRefGoogle Scholar
  26. 26.
    Edvinsson L, Gulbenkian S, Barroso CP et al (1998) Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides 19:1213–1225PubMedCrossRefGoogle Scholar
  27. 27.
    Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibres in dura mater—involvement in headache? Cephalalgia 1:175–179.  https://doi.org/10.1046/j.1468-2982.1981.0104175.x PubMedCrossRefGoogle Scholar
  28. 28.
    Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 309:515–534.  https://doi.org/10.1002/cne.903090408 PubMedCrossRefGoogle Scholar
  29. 29.
    Drummond PD, Lance JW (1992) Pathological sweating and flushing accompanying the trigeminal lacrimal reflex in patients with cluster headache and in patients with a confirmed site of cervical sympathetic deficit. Evidence for parasympathetic cross-innervation. Brain 115(Pt 5):1429–1445PubMedCrossRefGoogle Scholar
  30. 30.
    Drummond PD (1994) Sweating and vascular responses in the face: normal regulation and dysfunction in migraine, cluster headache and harlequin syndrome. Clin Auton Res 4:273–285PubMedCrossRefGoogle Scholar
  31. 31.
    Edvinsson L, Goadsby PJ (1994) Neuropeptides in migraine and cluster headache. Cephalalgia 14:320–327.  https://doi.org/10.1046/j.1468-2982.1994.1405320.x PubMedCrossRefGoogle Scholar
  32. 32.
    Fang HC (1961) Cerebral arterial innervations in man. Arch Neurol 4:651–656PubMedCrossRefGoogle Scholar
  33. 33.
    Keller JT, Saunders MC, Beduk A, Jollis JG (1985) Innervation of the posterior fossa dura of the cat. Brain Res Bull 14:97–102PubMedCrossRefGoogle Scholar
  34. 34.
    Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54:996–1009.  https://doi.org/10.1111/head.12371 PubMedCrossRefGoogle Scholar
  35. 35.
    Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77:299–308.  https://doi.org/10.1152/jn.1997.77.1.299 PubMedCrossRefGoogle Scholar
  36. 36.
    Lv X, Wu Z, Li Y (2014) Innervation of the cerebral dura mater. Neuroradiol J 27:293–298.  https://doi.org/10.15274/NRJ-2014-10052 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Düring Von M, Bauersachs M, Böhmer B et al (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol 182:363–373CrossRefGoogle Scholar
  38. 38.
    Strassman AM, Levy D (2006) Response properties of dural nociceptors in relation to headache. J Neurophysiol 95:1298–1306.  https://doi.org/10.1152/jn.01293.2005 PubMedCrossRefGoogle Scholar
  39. 39.
    Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Published online: 12 December 1996; |384:560–564.  https://doi.org/10.1038/384560a0
  40. 40.
    Dostrovsky JO, Davis KD, Kawakita K (1991) Central mechanisms of vascular headaches. Can J Physiol Pharmacol 69:652–658PubMedCrossRefGoogle Scholar
  41. 41.
    Blau JN, Dexter SL (1981) The site of pain origin during migraine attacks. Cephalalgia 1:143–147.  https://doi.org/10.1046/j.1468-2982.1981.0103143.x PubMedCrossRefGoogle Scholar
  42. 42.
    Bahns E, Ernsberger U, Jänig W, Nelke A (1986) Discharge properties of mechanosensitive afferents supplying the retroperitoneal space. Pflugers Arch 407:519–525PubMedCrossRefGoogle Scholar
  43. 43.
    Torebjörk HE, LaMotte RH, Robinson CJ (1984) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51:325–339.  https://doi.org/10.1152/jn.1984.51.2.325 PubMedCrossRefGoogle Scholar
  44. 44.
    Saper CB, Breder CD (1994) The neurologic basis of fever. N Engl J Med 330:1880–1886.  https://doi.org/10.1056/NEJM199406303302609 PubMedCrossRefGoogle Scholar
  45. 45.
    Schepelmann K, Ebersberger A, Pawlak M et al (1999) Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience 90:543–554PubMedCrossRefGoogle Scholar
  46. 46.
    Taiwo YO, Levine JD (1991) Further confirmation of the role of adenyl cyclase and of cAMP-dependent protein kinase in primary afferent hyperalgesia. Neuroscience 44:131–135.  https://doi.org/10.1016/0306-4522(91)90255-M PubMedCrossRefGoogle Scholar
  47. 47.
    Levine JD (1999) Peripheral mechanisms of inflammatory pain. In: Wall PD, Melzack R (ed) Textbook of Pain. Churchill Livingstone, London, pp 59–84Google Scholar
  48. 48.
    Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: Whole-cell and single-channel studies. J Neurosci 18:6081–6092PubMedCrossRefGoogle Scholar
  49. 49.
    Pitchford S, Levine JD (1991) Prostaglandins sensitize nociceptors in cell culture. Neurosci Lett 132:105–108PubMedCrossRefGoogle Scholar
  50. 50.
    Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147(Suppl 1):S202–S211.  https://doi.org/10.1038/sj.bjp.0706461 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 14:1289–1303.  https://doi.org/10.1016/j.jpain.2013.03.010 PubMedCrossRefGoogle Scholar
  52. 52.
    Uddman R, Goadsby PJ, Jansen I, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab 13:291–297.  https://doi.org/10.1038/jcbfm.1993.36 PubMedCrossRefGoogle Scholar
  53. 53.
    Ebersberger A (2001) Physiology of meningeal innervation: aspects and consequences of chemosensitivity of meningeal nociceptors. Microsc Res Tech 53:138–146.  https://doi.org/10.1002/jemt.1078 PubMedCrossRefGoogle Scholar
  54. 54.
    Edvinsson L, Elsås T, Suzuki N et al (2001) Origin and co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech 53:221–228.  https://doi.org/10.1002/jemt.1086 PubMedCrossRefGoogle Scholar
  55. 55.
    Bae JY, Kim JH, Cho YS et al (2015) Quantitative analysis of afferents expressing substance P, calcitonin gene-related peptide, isolectin B4, neurofilament 200, and peripherin in the sensory root of the rat trigeminal ganglion. J Comp Neurol 523:126–138.  https://doi.org/10.1002/cne.23672 PubMedCrossRefGoogle Scholar
  56. 56.
    Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab 9:212–218.  https://doi.org/10.1038/jcbfm.1989.31 PubMedCrossRefGoogle Scholar
  57. 57.
    Eftekhari S, Salvatore CA, Johansson S et al (2015) Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res 1600:93–109.  https://doi.org/10.1016/j.brainres.2014.11.031 PubMedCrossRefGoogle Scholar
  58. 58.
    Xiao Y, Richter JA, Hurley JH (2008) Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain 4:12.  https://doi.org/10.1186/1744-8069-4-12 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Battaglia G, Rustioni A (1988) Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol 277:302–312.  https://doi.org/10.1002/cne.902770210 PubMedCrossRefGoogle Scholar
  60. 60.
    Saito A, Lee TJ (1987) Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries of the rabbit. Circ Res 60:220–228PubMedCrossRefGoogle Scholar
  61. 61.
    De Felice M, Ossipov MH, Wang R et al (2010) Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain 133:2475–2488.  https://doi.org/10.1093/brain/awq159 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ramachandran R, Ploug KB, Hay-Schmidt A et al (2010) Nitric oxide synthase (NOS) in the trigeminal vascular system and other brain structures related to pain in rats. Neurosci Lett 484:192–196.  https://doi.org/10.1016/j.neulet.2010.08.050 PubMedCrossRefGoogle Scholar
  63. 63.
    Ramachandran R, Bhatt DK, Ploug KB et al (2014) Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 34:136–147.  https://doi.org/10.1177/0333102413502735 PubMedCrossRefGoogle Scholar
  64. 64.
    Reuter U, Bolay H, Jansen-Olesen I et al (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124:2490–2502PubMedCrossRefGoogle Scholar
  65. 65.
    Strecker T, Dux M, Messlinger K (2002) Nitric oxide releases calcitonin-gene-related peptide from rat dura mater encephali promoting increases in meningeal blood flow. J Vasc Res 39:489–496.  https://doi.org/10.1159/000067206 PubMedCrossRefGoogle Scholar
  66. 66.
    Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066.  https://doi.org/10.1111/j.1460-9568.2006.04742.x PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Strecker T, Dux M, Messlinger K (2002) Increase in meningeal blood flow by nitric oxide—interaction with calcitonin gene-related peptide receptor and prostaglandin synthesis inhibition. Cephalalgia 22:233–241.  https://doi.org/10.1046/j.1468-2982.2002.00356.x PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang X-C, Kainz V, Jakubowski M et al (2009) Localization of COX-1 and COX-2 in the intracranial dura mater of the rat. Neurosci Lett 452:33–36.  https://doi.org/10.1016/j.neulet.2009.01.032 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gupta S, Amrutkar DV, Mataji A et al (2010) Evidence for CGRP re-uptake in rat dura mater encephali. Br J Pharmacol 161:1885–1898.  https://doi.org/10.1111/j.1476-5381.2010.01012.x PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575.  https://doi.org/10.1016/j.neuron.2007.01.021 PubMedCrossRefGoogle Scholar
  71. 71.
    Geppert M, Goda Y, Hammer RE et al (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727PubMedCrossRefGoogle Scholar
  72. 72.
    Fernández-Chacón R, Königstorfer A, Gerber SH et al (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49.  https://doi.org/10.1038/35065004 PubMedCrossRefGoogle Scholar
  73. 73.
    Peroutka SJ (2005) Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv 5:304–311.  https://doi.org/10.1124/mi.5.5.10 PubMedCrossRefGoogle Scholar
  74. 74.
    Kowalski ML, Sliwinska-Kowalska M, Kaliner MA (1990) Neurogenic inflammation, vascular permeability, and mast cells. II Additional evidence indicating that mast cells are not involved in neurogenic inflammation. J Immunol 145:1214–1221PubMedGoogle Scholar
  75. 75.
    Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44:97–112PubMedCrossRefGoogle Scholar
  76. 76.
    Markowitz S, Saito K, Moskowitz MA (1988) Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8:83–91.  https://doi.org/10.1046/j.1468-2982.1988.0802083.x PubMedCrossRefGoogle Scholar
  77. 77.
    Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1334PubMedCrossRefGoogle Scholar
  78. 78.
    Hökfelt T, Millhorn D, Seroogy K et al (1987) Coexistence of peptides with classical neurotransmitters. Experientia 43:768–780PubMedCrossRefGoogle Scholar
  79. 79.
    Berg EA, Johnson RJ, Leeman SE et al (2000) Isolation and characterization of substance P-containing dense core vesicles from rabbit optic nerve and termini. J Neurosci Res 62:830–839.  https://doi.org/10.1002/1097-4547(20001215)62:6<830::AID-JNR10>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  80. 80.
    Kummer W (1992) Ultrastructure of calcitonin gene-related peptide-immunoreactive nerve fibres in guinea-pig peribronchial ganglia. Regul Pept 37:135–142PubMedCrossRefGoogle Scholar
  81. 81.
    Juliano RL, Carver K, Cao C, Ming X (2013) Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 21:27–43.  https://doi.org/10.3109/1061186X.2012.740674 PubMedCrossRefGoogle Scholar
  82. 82.
    Angers CG, Merz AJ (2011) New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 22:18–26.  https://doi.org/10.1016/j.semcdb.2010.07.003 PubMedCrossRefGoogle Scholar
  83. 83.
    Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353.  https://doi.org/10.1038/26412 PubMedCrossRefGoogle Scholar
  84. 84.
    Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 120:2864–2874.  https://doi.org/10.1242/jcs.012211 PubMedCrossRefGoogle Scholar
  85. 85.
    Krämer HH, Angerer C, Erbguth F et al (2003) Botulinum toxin A reduces neurogenic flare but has almost no effect on pain and hyperalgesia in human skin. J Neurol 250:188–193.  https://doi.org/10.1007/s00415-003-0971-x PubMedCrossRefGoogle Scholar
  86. 86.
    Tugnoli V, Capone JG, Eleopra R et al (2007) Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin. Pain 130:76–83.  https://doi.org/10.1016/j.pain.2006.10.030 PubMedCrossRefGoogle Scholar
  87. 87.
    Gazerani P, Staahl C, Drewes AM, Arendt-Nielsen L (2006) The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization. Pain 122:315–325.  https://doi.org/10.1016/j.pain.2006.04.014 PubMedCrossRefGoogle Scholar
  88. 88.
    Carmichael NME, Dostrovsky JO, Charlton MP (2010) Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain 149:316–324.  https://doi.org/10.1016/j.pain.2010.02.024 PubMedCrossRefGoogle Scholar
  89. 89.
    Marino MJ, Terashima T, Steinauer JJ et al (2014) Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 155:674–684.  https://doi.org/10.1016/j.pain.2013.12.009 PubMedCrossRefGoogle Scholar
  90. 90.
    Cui M, Khanijou S, Rubino J, Aoki KR (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107:125–133PubMedCrossRefGoogle Scholar
  91. 91.
    Ramachandran R, Lam C, Yaksh TL (2015) Botulinum toxin in migraine: role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis 79:111–122.  https://doi.org/10.1016/j.nbd.2015.04.011 PubMedCrossRefGoogle Scholar
  92. 92.
    Durham PL, Cady R, Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44:35–42—discussion 42–3.  https://doi.org/10.1111/j.1526-4610.2004.04007.x PubMedCrossRefGoogle Scholar
  93. 93.
    Meng J, Ovsepian SV, Wang J et al (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992.  https://doi.org/10.1523/JNEUROSCI.5490-08.2009 PubMedCrossRefGoogle Scholar
  94. 94.
    Theoharides TC, Spanos C, Pang X et al (1995) Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect. Endocrinology 136:5745–5750.  https://doi.org/10.1210/endo.136.12.7588332 PubMedCrossRefGoogle Scholar
  95. 95.
    Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49:65–76.  https://doi.org/10.1016/j.brainresrev.2004.11.006 PubMedCrossRefGoogle Scholar
  96. 96.
    Dalkara T, Zervas NT, Moskowitz MA (2006) From spreading depression to the trigeminovascular system. Neurol Sci 27(Suppl 2):S86–S90.  https://doi.org/10.1007/s10072-006-0577-z PubMedCrossRefGoogle Scholar
  97. 97.
    Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep 16:270–277.  https://doi.org/10.1007/s11916-012-0255-1 PubMedCrossRefGoogle Scholar
  98. 98.
    Guo A, Vulchanova L, Wang J et al (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang X-C, Strassman AM, Burstein R, Levy D (2007) Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J Pharmacol Exp Ther 322:806–812.  https://doi.org/10.1124/jpet.107.123745 PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Levy D, Kainz V et al (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865.  https://doi.org/10.1002/ana.22329 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hanko J, Hardebo JE, Kåhrström J et al (1985) Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibres and dilates pial and peripheral arteries. Neurosci Lett 57:91–95PubMedCrossRefGoogle Scholar
  102. 102.
    Edwards RM, Stack EJ, Trizna W (1991) Calcitonin gene-related peptide stimulates adenylate cyclase and relaxes intracerebral arterioles. J Pharmacol Exp Ther 257:1020–1024PubMedGoogle Scholar
  103. 103.
    Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 17:518–524.  https://doi.org/10.1046/j.1468-2982.1997.1704518.x PubMedCrossRefGoogle Scholar
  104. 104.
    Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Messlinger K, Hanesch U, Kurosawa M et al (1995) Calcitonin gene related peptide released from dural nerve fibers mediates increase of meningeal blood flow in the rat. Can J Physiol Pharmacol 73:1020–1024PubMedCrossRefGoogle Scholar
  106. 106.
    Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23:193–196.  https://doi.org/10.1002/ana.410230214 PubMedCrossRefGoogle Scholar
  107. 107.
    Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16:69–75PubMedCrossRefGoogle Scholar
  108. 108.
    Dux M, Sántha P, Jancsó G (2003) Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J Physiol Lond 552:859–867.  https://doi.org/10.1113/jphysiol.2003.050633 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Messlinger K, Fischer MJM, Lennerz JK (2011) Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 60:82–89PubMedCrossRefGoogle Scholar
  110. 110.
    Lassen LH, Haderslev PA, Jacobsen VB et al (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61PubMedCrossRefGoogle Scholar
  111. 111.
    Olesen J, Diener H-C, Husstedt IW et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110.  https://doi.org/10.1056/NEJMoa030505 PubMedCrossRefGoogle Scholar
  112. 112.
    Ho TW, Mannix LK, Fan X et al (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70:1304–1312.  https://doi.org/10.1212/01.WNL.0000286940.29755.61 PubMedCrossRefGoogle Scholar
  113. 113.
    Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187.  https://doi.org/10.1002/ana.410280213 PubMedCrossRefGoogle Scholar
  114. 114.
    Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705.  https://doi.org/10.1002/ana.20619 PubMedCrossRefGoogle Scholar
  115. 115.
    Covasala O, Stirn SL, Albrecht S et al (2012) Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol 108:431–440.  https://doi.org/10.1152/jn.00167.2011 PubMedCrossRefGoogle Scholar
  116. 116.
    Bhatt DK, Ramachandran R, Christensen SLT et al (2015) CGRP infusion in unanesthetized rats increases expression of c-Fos in the nucleus tractus solitarius and caudal ventrolateral medulla, but not in the trigeminal nucleus caudalis. Cephalalgia 35:220–233.  https://doi.org/10.1177/0333102414535995 PubMedCrossRefGoogle Scholar
  117. 117.
    Rahmann A, Wienecke T, Hansen JM et al (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28:226–236.  https://doi.org/10.1111/j.1468-2982.2007.01497.x PubMedCrossRefGoogle Scholar
  118. 118.
    Kruuse C, Thomsen LL, Birk S, Olesen J (2003) Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126:241–247PubMedCrossRefGoogle Scholar
  119. 119.
    Kruuse C, Thomsen LL, Jacobsen TB, Olesen J (2002) The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J Cereb Blood Flow Metab 22:1124–1131.  https://doi.org/10.1097/00004647-200209000-00010 PubMedCrossRefGoogle Scholar
  120. 120.
    Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136PubMedCrossRefGoogle Scholar
  121. 121.
    Alvaro G, Di Fabio R (2007) Neurokinin 1 receptor antagonists—current prospects. Curr Opin Drug Discov Devel 10:613–621PubMedGoogle Scholar
  122. 122.
    Shepherd SL, Williamson DJ, Beer MS et al (1997) Differential effects of 5-HT1B/1D receptor agonists on neurogenic dural plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacology 36:525–533PubMedCrossRefGoogle Scholar
  123. 123.
    Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13:307–311PubMedCrossRefGoogle Scholar
  125. 125.
    Goldstein DJ, Wang O, Saper JR et al (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790.  https://doi.org/10.1046/j.1468-2982.1997.1707785.x PubMedCrossRefGoogle Scholar
  126. 126.
    Diener H (2003) RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks. Cephalalgia 23:183–185.  https://doi.org/10.1046/j.1468-2982.2003.00496.x PubMedCrossRefGoogle Scholar
  127. 127.
    Goldstein DJ, Roon KI, Offen WW et al (2001) Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358:1230–1234PubMedCrossRefGoogle Scholar
  128. 128.
    Petersen LJ, Church MK, Skov PS (1997) Histamine is released in the wheal but not the flare following challenge of human skin in vivo: a microdialysis study. Clin Exp Allergy 27:284–295PubMedCrossRefGoogle Scholar
  129. 129.
    Petersen LJ (1997) Quantitative measurement of extracellular histamine concentrations in intact human skin in vivo by the microdialysis technique: methodological aspects. Allergy 52:547–555PubMedCrossRefGoogle Scholar
  130. 130.
    Weidner C, Klede M, Rukwied R et al (2000) Acute effects of substance P and calcitonin gene-related peptide in human skin—a microdialysis study. J Invest Dermatol 115:1015–1020.  https://doi.org/10.1046/j.1523-1747.2000.00142.x PubMedCrossRefGoogle Scholar
  131. 131.
    Gallai V, Alberti A, Gallai B et al (2003) Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid. Cephalalgia 23:166–174.  https://doi.org/10.1046/j.1468-2982.2003.00552.x PubMedCrossRefGoogle Scholar
  132. 132.
    Sarchielli P, Di Filippo M, Nardi K, Calabresi P (2007) Sensitization, glutamate, and the link between migraine and fibromyalgia. Curr Pain Headache Rep 11:343–351PubMedCrossRefGoogle Scholar
  133. 133.
    deGroot J, Zhou S, Carlton SM (2000) Peripheral glutamate release in the hindpaw following low and high intensity sciatic stimulation. Neuroreport 11:497–502PubMedCrossRefGoogle Scholar
  134. 134.
    Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87:3–11PubMedCrossRefGoogle Scholar
  135. 135.
    Nordlind K, Johansson O, Lidén S, Hökfelt T (1993) Glutamate- and aspartate-like immunoreactivities in human normal and inflamed skin. Virchows Arch B Cell Pathol 64:75–82CrossRefGoogle Scholar
  136. 136.
    Warncke T, Stubhaug A, Jørum E (2000) Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain 86:293–303PubMedCrossRefGoogle Scholar
  137. 137.
    Cairns BE, Sessle BJ, Hu JW (1998) Evidence that excitatory amino acid receptors within the temporomandibular joint region are involved in the reflex activation of the jaw muscles. J Neurosci 18:8056–8064PubMedCrossRefGoogle Scholar
  138. 138.
    Davidson EM, Carlton SM (1998) Intraplantar injection of dextrorphan, ketamine or memantine attenuates formalin-induced behaviors. Brain Res 785:136–142PubMedCrossRefGoogle Scholar
  139. 139.
    Davidson EM, Coggeshall RE, Carlton SM (1997) Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport 8:941–946PubMedCrossRefGoogle Scholar
  140. 140.
    Jackson DL, Graff CB, Richardson JD, Hargreaves KM (1995) Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol 284:321–325PubMedCrossRefGoogle Scholar
  141. 141.
    Lawand NB, Willis WD, Westlund KN (1997) Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. Eur J Pharmacol 324:169–177PubMedCrossRefGoogle Scholar
  142. 142.
    Carlton SM, Zhou S, Coggeshall RE (1998) Evidence for the interaction of glutamate and NK1 receptors in the periphery. Brain Res 790:160–169PubMedCrossRefGoogle Scholar
  143. 143.
    Bhave G, Karim F, Carlton SM, Gereau RW (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423.  https://doi.org/10.1038/86075 PubMedCrossRefGoogle Scholar
  144. 144.
    Woo DH, Jung SJ, Zhu MH et al (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42.  https://doi.org/10.1186/1744-8069-4-42 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hu H-J, Bhave G, Gereau RW (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22:7444–7452PubMedCrossRefGoogle Scholar
  146. 146.
    Juhasz G, Zsombok T, Jakab B et al (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183.  https://doi.org/10.1111/j.1468-2982.2005.00836.x PubMedCrossRefGoogle Scholar
  147. 147.
    Johnson KW, Phebus LA, Cohen ML (1998) Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res 51:219–244PubMedCrossRefGoogle Scholar
  148. 148.
    Durham PL, Sharma RV, Russo AF (1997) Repression of the calcitonin gene-related peptide promoter by 5-HT1 receptor activation. J Neurosci 17:9545–9553PubMedCrossRefGoogle Scholar
  149. 149.
    Cutrer FM, Yu XJ, Ayata G et al (1999) Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis. Neuropharmacology 38:1043–1053PubMedCrossRefGoogle Scholar
  150. 150.
    Thomsen LL, Olesen J (2001) Nitric oxide in primary headaches. Curr Opin Neurol 14:315–321PubMedCrossRefGoogle Scholar
  151. 151.
    Ramachandran R, Bhatt DK, Ploug KB et al (2012) A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia 32:73–84.  https://doi.org/10.1177/0333102411430855 PubMedCrossRefGoogle Scholar
  152. 152.
    Lassen LH, Ashina M, Christiansen I et al (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402PubMedCrossRefGoogle Scholar
  153. 153.
    Zhang X, Kainz V, Zhao J et al (2013) Vascular extracellular signal-regulated kinase mediates migraine-related sensitization of meningeal nociceptors. Ann Neurol 73:741–750.  https://doi.org/10.1002/ana.23873 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    McIlvried LA, Cruz JA, Borghesi LA, Gold MS (2016) Sex-, stress-, and sympathetic post-ganglionic-dependent changes in identity and proportions of immune cells in the dura. Cephalalgia.  https://doi.org/10.1177/0333102416637832
  155. 155.
    Dimlich RV, Keller JT, Strauss TA, Fritts MJ (1991) Linear arrays of homogeneous mast cells in the dura mater of the rat. J Neurocytol 20:485–503PubMedCrossRefGoogle Scholar
  156. 156.
    Sicuteri F, Ricci M, Monfardini R, Ficini M (1957) Experimental headache with endogeneous histamine; first results obtained by 48/80, a histamine-liberator drug, in the cephalic and peripheral circulatory systems of man. Physiol Asp Clin Neurol 11:188–192Google Scholar
  157. 157.
    Monro J, Carini C, Brostoff J (1984) Migraine is a food-allergic disease. Lancet 2:719–721PubMedCrossRefGoogle Scholar
  158. 158.
    Smith JH, Butterfield JH, Cutrer FM (2011) Primary headache syndromes in systemic mastocytosis. Cephalalgia 31:1522–1531.  https://doi.org/10.1177/0333102411421683 PubMedCrossRefGoogle Scholar
  159. 159.
    Bigal ME, Sheftell FD, Rapoport AM et al (2002) Chronic daily headache: identification of factors associated with induction and transformation. Headache 42:575–581.  https://doi.org/10.1046/j.1526-4610.2002.02143.x PubMedCrossRefGoogle Scholar
  160. 160.
    Schwartz LB (1987) Mediators of human mast cells and human mast cell subsets. Ann Allergy 58:226–235PubMedGoogle Scholar
  161. 161.
    Theoharides TC, Alysandratos K-D, Angelidou A et al (2012) Mast cells and inflammation. Biochim Biophys Acta (BBA) - Mol Basis Dis 1822:21–33.  https://doi.org/10.1016/j.bbadis.2010.12.014 CrossRefGoogle Scholar
  162. 162.
    Gri G, Frossi B, D'Inca F et al (2012) Mast cell: an emerging partner in immune interaction. Front Immunol 3:120.  https://doi.org/10.3389/fimmu.2012.00120 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Aich A, Feindel WH, Gupta K (2015) Mast cell-mediated mechanisms of nociception. Int J Mol Sci 16:29069–29092.  https://doi.org/10.3390/ijms161226151 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Perini F, D'Andrea G, Galloni E et al (2005) Plasma cytokine levels in migraineurs and controls. Headache 45:926–931.  https://doi.org/10.1111/j.1526-4610.2005.05135.x PubMedCrossRefGoogle Scholar
  165. 165.
    Sarchielli P, Alberti A, Baldi A et al (2006) Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 46:200–207.  https://doi.org/10.1111/j.1526-4610.2006.00337.x PubMedCrossRefGoogle Scholar
  166. 166.
    Rozen T, Swidan SZ (2007) Elevation of CSF tumor necrosis factor alpha levels in new daily persistent headache and treatment refractory chronic migraine. Headache 47:1050–1055.  https://doi.org/10.1111/j.1526-4610.2006.00722.x PubMedCrossRefGoogle Scholar
  167. 167.
    Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17:166–174.  https://doi.org/10.1046/j.1468-2982.1997.1703166.x PubMedCrossRefGoogle Scholar
  168. 168.
    Rozniecki JJ, Dimitriadou V, Lambracht-Hall M et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849:1–15PubMedCrossRefGoogle Scholar
  169. 169.
    Groetzner P, Weidner C (2010) The human vasodilator axon reflex—an exclusively peripheral phenomenon? Pain 149:71–75.  https://doi.org/10.1016/j.pain.2010.01.012 PubMedCrossRefGoogle Scholar
  170. 170.
    Tani E, Senba E, Kokumai S et al (1990) Histamine application to the nasal mucosa induces release of calcitonin gene-related peptide and substance P from peripheral terminals of trigeminal ganglion: a morphological study in the guinea pig. Neurosci Lett 112:1–6PubMedCrossRefGoogle Scholar
  171. 171.
    Levy D, Burstein R, Kainz V et al (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130:166–176.  https://doi.org/10.1016/j.pain.2007.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Levy D, Kainz V, Burstein R, Strassman AM (2012) Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 26:311–317.  https://doi.org/10.1016/j.bbi.2011.09.016 PubMedCrossRefGoogle Scholar
  173. 173.
    Zhang X-C, Kainz V, Burstein R, Levy D (2011) Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 152:140–149.  https://doi.org/10.1016/j.pain.2010.10.002 PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang X-C, Levy D (2008) Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells. Cephalalgia 28:276–284.  https://doi.org/10.1111/j.1468-2982.2007.01523.x PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Baun M, Pedersen MHF, Olesen J, Jansen-Olesen I (2012) Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia 32:337–345.  https://doi.org/10.1177/0333102412439354 PubMedCrossRefGoogle Scholar
  176. 176.
    Pedersen SH, Ramachandran R, Amrutkar DV et al (2015) Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia 35:1287–1297.  https://doi.org/10.1177/0333102415574846 PubMedCrossRefGoogle Scholar
  177. 177.
    Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095.  https://doi.org/10.1126/science.1231897 PubMedCrossRefGoogle Scholar
  178. 178.
    Zhao J, Levy D (2015) Modulation of intracranial meningeal nociceptor activity by cortical spreading depression: a reassessment. J Neurophysiol 113:2778–2785.  https://doi.org/10.1152/jn.00991.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Boes T, Levy D (2012) Influence of sex, estrous cycle, and estrogen on intracranial dural mast cells. Cephalalgia 32:924–931.  https://doi.org/10.1177/0333102412454947 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Zaitsu M, Narita S-I, Lambert KC et al (2007) Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol 44:1977–1985.  https://doi.org/10.1016/j.molimm.2006.09.030 PubMedCrossRefGoogle Scholar
  181. 181.
    Woller SA, Ravula SB, Tucci FC et al (2016) Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: the role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 56:271–280.  https://doi.org/10.1016/j.bbi.2016.03.026 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Qi J, Buzas K, Fan H et al (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186:6417–6426.  https://doi.org/10.4049/jimmunol.1001241 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lin J-J, Du Y, Cai W-K et al (2015) Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats. Sci Rep 5:12549.  https://doi.org/10.1038/srep12549 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Ohara K, Shimizu K, Matsuura S et al (2013) Toll-like receptor 4 signaling in trigeminal ganglion neurons contributes tongue-referred pain associated with tooth pulp inflammation. J Neuroinflammation 10:139.  https://doi.org/10.1186/1742-2094-10-139 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Wei X, Melemedjian OK, DD-U A et al (2014) Dural fibroblasts play a potential role in headache pathophysiology. Pain 155:1238–1244.  https://doi.org/10.1016/j.pain.2014.03.013 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Liu T, Gao Y-J, Ji R-R (2012) Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 28:131–144.  https://doi.org/10.1007/s12264-012-1219-5 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Fazzari J, Linher-Melville K, Singh G (2017) Tumour-derived glutamate: linking aberrant cancer cell metabolism to peripheral sensory pain pathways. Curr Neuropharmacol 15:620–636.  https://doi.org/10.2174/1570159X14666160509123042 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Nicolodi M, Sicuteri F (1992) Chronic naloxone administration, a potential treatment for migraine, enhances morphine-induced miosis. Headache 32:348–352.  https://doi.org/10.1111/j.1526-4610.1992.hed3207348.x PubMedCrossRefGoogle Scholar
  189. 189.
    Centonze V, Brucoli C, Macinagrossa G et al (1983) Non-familial hemiplegic migraine responsive to naloxone. Cephalalgia 3:125–127.  https://doi.org/10.1046/j.1468-2982.1983.0302125.x PubMedCrossRefGoogle Scholar
  190. 190.
    Sicuteri F, Boccuni M, Fanciullacci M, Gatto G (1983) Naloxone effectiveness on spontaneous and induced perceptive disorders in migraine. Headache 23:179–183.  https://doi.org/10.1111/j.1526-4610.1983.hed2304179.x PubMedCrossRefGoogle Scholar
  191. 191.
    Lewis SS, Loram LC, Hutchinson MR et al (2012) (+)-Naloxone, an opioid-inactive Toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain 13:498–506.  https://doi.org/10.1016/j.jpain.2012.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hutchinson MR, Northcutt AL, Hiranita T (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32(33):11187–200Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anesthesiology Research, Department of AnesthesiologyUniversity of CaliforniaLa JollaUSA

Personalised recommendations