Skip to main content

Advertisement

Log in

CDA and MTHFR polymorphisms are associated with clinical outcomes in gastroenteric cancer patients treated with capecitabine-based chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The impact of pharmacogenetics on predicting survival in gastroenteric cancer remains unclear.

Methods

We tested 322 consecutive patients treated with capecitabine-based chemotherapy for CDA and MTHFR polymorphisms.

Results

Patients who carried the CDA 79 A>C (rs2072671) CC genotype showed significantly shorter progression-free survival (PFS) comparing with A-allele (P = 0.008). A significant better PFS was found in the patients with 451 A>G (rs532545) G-allele (P = 0.002) and 92 C>T (rs602950) T-allele (P = 0.002). In addition, a shorter PFS was also observed in patients with MTHFR 1298 A>C (rs1801131) CC genotype than the patients with AC or AA genotype after capecitabine-based chemotherapy (P = 0.002). Furthermore, the colon, female, or elder (> 65 years old) patients with MTHFR 1298 A>C CC genotype had poorer PFS than A-allele. Moreover, CDA 451 A>G was independent predictors of chemotherapy-induced toxicity in colon patients. Multivariate Cox regression analysis demonstrated that the CDA 79 A>C CC, 451 A>G AA, 92 C>T CC, and MTHFR 1298 A>C CC were predictive of shorter PFS in gastroenteric cancer patients.

Conclusions

The results reminded us those gastroenteric cancer patients with CDA 79 A>C CC, 451 A>G AA, 92 C>T CC, or MTHFR 1298 A>C CC genotype are not likely to benefit from the therapy of capecitabine-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beets GL, Beets-Tan RG (2012) Capecitabine in the treatment of rectal cancer. Lancet Oncol 13(6):560–561

    Article  PubMed  Google Scholar 

  2. Sharma SP (2007) Capecitabine and irinotecan in advanced gastric cancer. Lancet Oncol 8(7):577

    Article  PubMed  Google Scholar 

  3. Silvestris N, Maiello E, De Vita F, Cinieri S, Santini D, Russo A, Tommasi S, Azzariti A, Numico G, Pisconti S, Petriella D, Lorusso V, Millaku A, Colucci G (2010) Update on capecitabine alone and in combination regimens in colorectal cancer patients. Cancer Treat Rev 36(10):S46–S55

    Article  CAS  PubMed  Google Scholar 

  4. Rosmarin D, Palles C, Church D, Domingo E, Jones A, Johnstone E, Wang H, Love S, Julier P, Scudder C, Nicholson G, Gonzalez-Neira A, Martin M, Sargent D, Green E, McLeod H, Zanger UM, Schwab M, Braun M, Seymour M, Thompson L, Lacas B, Boige V, Ribelles N, Afzal S, Enghusen H, Jensen SA, Etienne-Grimaldi MC, Milano G, Wadelius M, Glimelius B, Garmo H, Gusella M, Lecomte T, Laurent-Puig P, Martinez-Balibrea E, Sharma R, Garcia-Foncillas J, Kleibl Z, Morel A, Pignon JP, Midgley R, Kerr D, Tomlinson I (2014) Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol 32(10):1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thorn CF, Marsh S, Carrillo MW, McLeod HL, Klein TE, Altman RB (2011) PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet Genomics 21(4):237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam SW, Guchelaar HJ, Boven E (2016) The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat Rev 50:9–22

    Article  CAS  PubMed  Google Scholar 

  7. Amstutz U, Froehlich TK, Largiadèr CR (2011) Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 12(9):1321–1336

    Article  CAS  PubMed  Google Scholar 

  8. Mercier C, Ciccolini J (2007) Profiling dihydropyrimidine dehydrogenase deficiency in patients with cancer undergoing 5-fluorouracil/capecitabine therapy. Clinical Colorectal Cancer 6(4):288–296

    Article  Google Scholar 

  9. Morita T, Matsuzaki A, Kurokawa S, Tokue A (2003) Forced expression of cytidine deaminase confers sensitivity to capecitabine. Oncology 65(3):267–274

    Article  CAS  PubMed  Google Scholar 

  10. Serdjebi C, Milano G, Ciccolini J (2015) Role of cytidine deaminase in toxicity and efficacy of nucleoside analogs. Expert Opin Drug Metab Toxicol 11(5):665–672

    Article  CAS  PubMed  Google Scholar 

  11. Mercier C, Dupuis C, Blesius A, Fanciullino R, Yang CG, Padovani L, Giacometti S, Frances N, Iliadis A, Duffaud F, Ciccolini J (2009) Early severe toxicities after capecitabine intake: possible implication of a cytidine deaminase extensive metabolizer profile. Cancer Chemother Pharmacol 63(6):1177–1180

    Article  PubMed  Google Scholar 

  12. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  CAS  PubMed  Google Scholar 

  13. Nazki FH, Sameer AS, Ganaie BA (2014) Folate: metabolism, genes, polymorphisms and the associated diseases. Gene 533(1):11–20

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez J, Boni V, Hernández A, Bitarte N, Zarate R, Ponz-Sarvisé M, Chopitea A, Bandres E, Garcia-Foncillas J (2011) Association of RRM1 -37A>C polymorphism with clinical outcome in colorectal cancer patients treated with gemcitabine-based chemotherapy. Eur J Cancer 47(6):839–847

    Article  CAS  PubMed  Google Scholar 

  15. Meulendijks D, Rozeman EA, Cats A, Sikorska K, Joerger M, Deenen MJ, Beijnen JH, Schellens JHM (2017) Pharmacogenetic variants associated with outcome in patients with advanced gastric cancer treated with fluoropyrimidine and platinum-based triplet combinations: a pooled analysis of three prospective studies. Pharmacogenomics J 17(5):441–451

    Article  CAS  PubMed  Google Scholar 

  16. Pellicer M, García-González X, García MI, Robles L, Grávalos C, García-Alfonso P, Pachón V, Longo F, Martínez V, Blanco C, Iglesias I, Sanjurjo M, López-Fernández LA (2017) Identification of new SNPs associated with severe toxicity to capecitabine. Pharmacol Res 120:133–137

    Article  CAS  PubMed  Google Scholar 

  17. García-González X, Cortejoso L, García MI, García-Alfonso P, Robles L, Grávalos C, González-Haba E, Marta P, Sanjurjo M, López-Fernández LA (2015) Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget 6(8):6422–6430

    Article  PubMed  PubMed Central  Google Scholar 

  18. Caronia D, Martin M, Sastre J, de la Torre J, García-Sáenz JA, Alonso MR, Moreno LT, Pita G, Díaz-Rubio E, Benítez J, González-Neira A (2011) A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome. Clin Cancer Res 17(7):2006–2013

    Article  CAS  PubMed  Google Scholar 

  19. Hamzic S, Kummer D, Milesi S, Mueller D, Joerger M, Aebi S, Amstutz U, Largiader CR (2017) Novel genetic variants in carboxylesterase 1 predict severe early-onset capecitabine-related toxicity. Clin Pharmacol Ther 102(5):796–804

    Article  CAS  PubMed  Google Scholar 

  20. Loganayagam A, Arenas Hernandez M, Corrigan A, Fairbanks L, Lewis CM, Harper P, Maisey N, Ross P, Sanderson JD, Marinaki AM (2013) Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer 108(12):2505–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ribelles N, López-Siles J, Sánchez A, González E, Sánchez MJ, Carabantes F, Sánchez-Rovira P, Márquez A, Dueñas R, Sevilla I, Alba E (2008) A carboxylesterase 2 gene polymorphism as predictor of capecitabine on response and time to progression. Curr Drug Metab 9(4):336–343

    Article  CAS  PubMed  Google Scholar 

  22. Deenen MJ, Meulendijks D, Boot H, Legdeur MC, Beijnen JH, Schellens JH, Cats A (2015) Phase 1a/1b and pharmacogenetic study of docetaxel, oxaliplatin and capecitabine in patients with advanced cancer of the stomach or the gastroesophageal junction. Cancer Chemother Pharmacol 76(6):1285–1295

    Article  CAS  PubMed  Google Scholar 

  23. Zhong L, He X, Zhang Y, Chuan JL, Chen M, Zhu SM, Peng Q (2018) Relevance of methylenetetrahydrofolate reductase gene variants C677T and A1298C with response to fluoropyrimidine-based chemotherapy in colorectal cancer: a systematic review and meta-analysis. Oncotarget 9(58):31291–31301

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suh KW, Kim JH, Kim DY, Kim YB, Lee C, Choi S (2006) Which gene is a dominant predictor of response during FOLFOX chemotherapy for the treatment of metastatic colorectal cancer, the MTHFR or XRCC1 gene? Ann Surg Oncol 13:1379–1385

    Article  PubMed  Google Scholar 

  25. Huang MY, Fang WY, Lee SC, Cheng TL, Wang JY, Lin SR (2008) ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: a preliminary study. BMC Cancer 8:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chai H, Pan J, Zhang X, Zhang X, Shen X, Li H, Zhang K, Yang C, Sheng H, Gao H (2012) ERCC1 C118T associates with response to FOLFOX4 chemotherapy in colorectal cancer patients in Han Chinese. Int J Clin Exp Med 5:186–194

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumamoto K, Ishibashi K, Okada N, Tajima Y, Kuwabara K, Kumagai Y, Baba H, Haga N, Ishida H (2013) Polymorphisms of GSTP1ERCC2 and TS-3′UTR are associated with the clinical outcome of mFOLFOX6 in colorectal cancer patients. Oncol Lett 6:648–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao J, Zhang W, Li WH, Zhang Z, Zhu D, Yu QH, Guo WJ, Li J (2012) Predictive role of single nucleotide polymorphisms of MTHFR and ABCG2 genes in the response to first-Line chemotherapy in advanced colorectal cancer. Tumor 32:709–716

    CAS  Google Scholar 

  29. Tang C, Yu S, Jiang H, Li W, Xu X, Cheng X, Peng K, Chen E, Cui Y, Liu T (2018) A meta-analysis: methylenetetrahydrofolate reductase C677T polymorphism in gastric cancer patients treated with 5-Fu based chemotherapy predicts serious hematologic toxicity but not prognosis. J Cancer 9(6):1057–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu R, Zhao X, Liu X, Chen Z, Qiu L, Geng R, Guo W, He G, Yin J, Li J, Zhu X (2016) Influences of ERCC1, ERCC2, XRCC1, GSTP1, GSTT1, and MTHFR polymorphisms on clinical outcomes in gastric cancer patients treated with EOF chemotherapy. Tumour Biol 37(2):1753–1762

    Article  CAS  PubMed  Google Scholar 

  31. Chen JS, Chao Y, Bang YJ, Roca E, Chung HC, Palazzo F, Kim YH, Myrand SP, Mullaney BP, Shen LJ, Linn C (2010) A phase I/II and pharmacogenomic study of pemetrexed and cisplatin in patients with unresectable, advanced gastric carcinoma. Anticancer Drugs 21:777–784

    Article  CAS  PubMed  Google Scholar 

  32. Huang ZH, Hua D, Li LH (2009) The polymorphisms of TS and MTHFR predict survival of gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy in Chinese population. Cancer Chemother Pharmacol 63:911–918

    Article  CAS  PubMed  Google Scholar 

  33. Zhao T, Gu D, Xu Z, Huo X, Shen L, Wang C, Tang Y, Wu P, He J, Gong W, He ML, Chen J (2015) Polymorphism in one-carbon metabolism pathway affects survival of gastric cancer patients: large and comprehensive study. Oncotarget 6(11):9564–9576

    PubMed  PubMed Central  Google Scholar 

  34. Morishita T, Hishida A, Okugawa Y, Morimoto Y, Shirai Y, Okamoto K, Momokita S, Ogawa A, Tanaka K, Nishikawa R, Toiyama Y, Inoue Y, Sakurai H, Urata H, Tanaka M, Miki C (2018) Polymorphisms in folic acid metabolism genes do not associate with cancer cachexia in Japanese gastrointestinal patients. Nagoya J Med Sci 80(4):529–539

    PubMed  PubMed Central  Google Scholar 

  35. Leicher LW, de Graaf JC, Coers W, Tascilar M, de Groot JW (2017) Tolerability of capecitabine monotherapy in metastatic colorectal cancer: a real-world study. Drugs R D 17(1):117–124

    Article  CAS  PubMed  Google Scholar 

  36. Saif MW, Katirtzoglou NA, Syrigos KN (2018) Capecitabine: an overview of the side effects and their management. Anticancer Drugs 19(5):447–464

    Google Scholar 

  37. Beijers AJ, Jongen JL, Vreugdenhil G (2012) Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth J Med 70(1):18–25

    CAS  PubMed  Google Scholar 

  38. Grothey A (2003) Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 30(4 Suppl 15):5–13

    Article  CAS  PubMed  Google Scholar 

  39. Marse H, Van Cutsem E, Grothey A, Valverde S (2004) Management of adverse events and other practical considerations in patients receiving capecitabine (Xeloda). Eur J Oncol Nurs 8(Suppl 1):S16–S30

    Article  PubMed  Google Scholar 

  40. Huang XZ, Chen Y, Chen WJ, Zhang X, Wu CC, Wang ZN, Wu J (2018) Clinical evidence of prevention strategies for capecitabine-induced hand-foot syndrome. Int J Cancer 142(12):2567–2577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program for Haiyan fund of Harbin Medical University Cancer Hospital (General Program) (Grant no. JJMS2014-01); “The mechanism of capecitabine-induced hand-foot syndrome” (Grant no. YJHYXKYJJ-703). The Fundamental Research Funds for the Provincial Universities (Grant no. 2017LCZX75); China Postdoctoral Science Foundation (Grant no. 2018M631952); Heilongjiang Postdoctoral Fund (Grant no. LBH-Z17148); Youth science of Harbin Medical University Cancer Hospital (Grant no. BJQN2018-03), and Chinese Medical Association Clinical Pharmacy Branch-Wu Jieping Medical Foundation Research Fund (Grant No. LCYX-Q031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Dong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, X., Li, X. et al. CDA and MTHFR polymorphisms are associated with clinical outcomes in gastroenteric cancer patients treated with capecitabine-based chemotherapy. Cancer Chemother Pharmacol 83, 939–949 (2019). https://doi.org/10.1007/s00280-019-03809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03809-2

Keywords

Navigation