Skip to main content

Advertisement

Log in

Phase I study of the anti-α5β1 monoclonal antibody MINT1526A with or without bevacizumab in patients with advanced solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

MINT1526A is a monoclonal antibody that blocks the interaction of integrin alpha 5 beta 1 (α5β1) with its extracellular matrix ligands. This phase I study evaluated the safety and pharmacokinetics of MINT1526A with or without bevacizumab in patients with advanced solid tumors.

Methods

MINT1526A was administered every 3 weeks (Q3W) as monotherapy (arm 1) or in combination with bevacizumab 15 mg/kg, Q3W (arm 2). Each arm included a 3 + 3 dose-escalation stage and a dose-expansion stage.

Results

Twenty-four patients were enrolled in arm 1 (dose range 2–30 mg/kg) and 30 patients were enrolled in arm 2 (dose range 3–15 mg/kg). Monocyte α5β1 receptor occupancy was saturated at a dose of 15 mg/kg. No dose-limiting toxicities were observed, and the maximum tolerated dose was not reached in either arm. The most common adverse events, regardless of causality, included abdominal pain (25%), diarrhea (25%), nausea (21%), vomiting (21%), and fatigue (21%) in arm 1 and nausea (40%), fatigue (33%), vomiting (30%), dehydration (30%), headache (30%), and hypertension (30%) in arm 2. No grade ≥ 3 bleeding events were observed in either arm. No confirmed partial responses (PR) were observed in arm 1. In arm 2, one patient with thymic carcinoma experienced a confirmed PR and two patients with hepatocellular carcinoma (HCC) experienced durable minor radiographic responses.

Conclusions

MINT1526A, with or without bevacizumab, was well-tolerated. Preliminary evidence of combination efficacy, including in patients with HCC, was observed, but cannot be distinguished from bevacizumab monotherapy in this phase I study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156(4):1345–1362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Boudreau NJ, Varner JA (2004) The homeobox transcription factor Hox D3 promotes integrin α5β1 expression and function during angiogenesis. J Biol Chem 279(6):4862–4868. https://doi.org/10.1074/jbc.M305190200

    Article  PubMed  CAS  Google Scholar 

  3. Muether PS, Dell S, Kociok N, Zahn G, Stragies R, Vossmeyer D, Joussen AM (2007) The role of integrin alpha5beta1 in the regulation of corneal neovascularization. Exp Eye Res 85(3):356–365. https://doi.org/10.1016/j.exer.2007.06.004

    Article  PubMed  CAS  Google Scholar 

  4. Kim S, Bakre M, Yin H, Varner JA (2002) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 110(7):933–941. https://doi.org/10.1172/jci14268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1703–1713. https://doi.org/10.1161/atvbaha.108.172015

    Article  PubMed  CAS  Google Scholar 

  6. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  PubMed  CAS  Google Scholar 

  7. Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8(9):918–921. https://doi.org/10.1038/nm0902-918

    Article  PubMed  CAS  Google Scholar 

  8. Taverna D, Hynes RO (2001) Reduced blood vessel formation and tumor growth in alpha5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 61(13):5255–5261

    PubMed  CAS  Google Scholar 

  9. Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W (2015) MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 519(7544):425–430. https://doi.org/10.1038/nature14323

    Article  PubMed  CAS  Google Scholar 

  10. Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101(10):708–720. https://doi.org/10.1093/jnci/djp079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garcia-Carbonero R, van Cutsem E, Rivera F, Jassem J, Gore I Jr, Tebbutt N, Braiteh F, Argiles G, Wainberg ZA, Funke R, Anderson M, McCall B, Stroh M, Wakshull E, Hegde P, Ye W, Chen D, Chang I, Rhee I, Hurwitz H (2017) Randomized phase II trial of parsatuzumab (anti-EGFL7) or placebo in combination with FOLFOX and bevacizumab for first-line metastatic colorectal cancer. Oncologist 22(4):375-e330. https://doi.org/10.1634/theoncologist.2016-0133

    Article  CAS  Google Scholar 

  12. Fredrickson J, Serkova NJ, Wyatt SK, Carano RA, Pirzkall A, Rhee I, Rosen LS, Bessudo A, Weekes C, de Crespigny A (2017) Clinical translation of ferumoxytol-based vessel size imaging (VSI): feasibility in a phase I oncology clinical trial population. Magn Reson Med 77(2):814–825. https://doi.org/10.1002/mrm.26167

    Article  PubMed  Google Scholar 

  13. Ng CS, Raunig DL, Jackson EF, Ashton EA, Kelcz F, Kim KB, Kurzrock R, McShane TM (2010) Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. AJR Am J Roentgenol 194(2):W134–140. https://doi.org/10.2214/ajr.09.3116

    Article  PubMed  Google Scholar 

  14. Brauer MJ, Zhuang G, Schmidt M, Yao J, Wu X, Kaminker JS, Jurinka SS, Kolumam G, Chung AS, Jubb A, Modrusan Z, Ozawa T, James CD, Phillips H, Haley B, Tam RN, Clermont AC, Cheng JH, Yang SX, Swain SM, Chen D, Scherer SJ, Koeppen H, Yeh RF, Yue P, Stephan JP, Hegde P, Ferrara N, Singh M, Bais C (2013) Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies. Clin Cancer Res 19(13):3681–3692. https://doi.org/10.1158/1078-0432.ccr-12-3635

    Article  PubMed  CAS  Google Scholar 

  15. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9(3):167–177. https://doi.org/10.1038/nrclinonc.2012.2

    Article  PubMed  CAS  Google Scholar 

  16. Ye W (2016) The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev Cell 37(2):114–125. https://doi.org/10.1016/j.devcel.2016.03.015

    Article  PubMed  CAS  Google Scholar 

  17. Moreno Garcia V, Basu B, Molife LR, Kaye SB (2012) Combining antiangiogenics to overcome resistance: rationale and clinical experience. Clin Cancer Res 18(14):3750–3761. https://doi.org/10.1158/1078-0432.ccr-11-1275

    Article  PubMed  CAS  Google Scholar 

  18. Rini BI, Garcia JA, Cooney MM, Elson P, Tyler A, Beatty K, Bokar J, Mekhail T, Bukowski RM, Budd GT, Triozzi P, Borden E, Ivy P, Chen HX, Dolwati A, Dreicer R (2009) A phase I study of sunitinib plus bevacizumab in advanced solid tumors. Clin Cancer Res 15(19):6277–6283. https://doi.org/10.1158/1078-0432.ccr-09-0717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, Boleti E, Fife K, Jin J, Jones R, Uemura H, De Giorgi U, Harmenberg U, Wang J, Sternberg CN, Deen K, McCann L, Hackshaw MD, Crescenzo R, Pandite LN, Choueiri TK (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369(8):722–731. https://doi.org/10.1056/NEJMoa1303989

    Article  PubMed  CAS  Google Scholar 

  20. Negrier S, Perol D, Bahleda R, Hollebecque A, Chatelut E, Boyle H, Cassier P, Metzger S, Blanc E, Soria JC, Escudier B (2017) Phase I dose-escalation study of pazopanib combined with bevacizumab in patients with metastatic renal cell carcinoma or other advanced tumors. BMC Cancer 17(1):547. https://doi.org/10.1186/s12885-017-3527-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, Weiss G, Yazji S, Ng C, Wilding G (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 14(23):7924–7929. https://doi.org/10.1158/1078-0432.ccr-08-0378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mateo J, Berlin J, de Bono JS, Cohen RB, Keedy V, Mugundu G, Zhang L, Abbattista A, Davis C, Gallo Stampino C, Borghaei H (2014) A first-in-human study of the anti-alpha5beta1 integrin monoclonal antibody PF-04605412 administered intravenously to patients with advanced solid tumors. Cancer Chemother Pharmacol 74(5):1039–1046. https://doi.org/10.1007/s00280-014-2576-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. https://doi.org/10.1056/NEJMoa0708857

    Article  PubMed  CAS  Google Scholar 

  24. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Cheng AL, Llovet JM, Finn RS, LeBerre MA, Baumhauer A, Meinhardt G, Han G (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389(10064):56–66. https://doi.org/10.1016/s0140-6736(16)32453-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish many thanks to all of the patients and the investigators who participated in this study. Editing and writing support was provided by A. Daisy Goodrich (Genentech, Inc., South San Francisco, CA, USA) and was funded by Genentech, Inc.

Funding

This work was supported by Genentech, Inc., South San Francisco, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Weekes.

Ethics declarations

Conflict of interest

C.D. Weekes, A. Capasso, K.M. Wong, and A. Bessudo have no disclosures. L.S. Rosen is affiliated with institution that received research funding from Genentech. W. Ye, M. Anderson, B. McCall, J. Fredrickson, E. Wakshull, S. Eppler, Q. Shon-Nguyen, R. Desai, M. Huseni, P.S. Hegde, T. Pourmohamad, and I. Rhee are employees of Genentech, Inc., and shareholders of Roche.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weekes, C.D., Rosen, L.S., Capasso, A. et al. Phase I study of the anti-α5β1 monoclonal antibody MINT1526A with or without bevacizumab in patients with advanced solid tumors. Cancer Chemother Pharmacol 82, 339–351 (2018). https://doi.org/10.1007/s00280-018-3622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3622-8

Keywords

Navigation