Skip to main content

Advertisement

Log in

Possible involvement of the lipoxygenase and leukotriene signaling pathways in cisplatin-mediated renal toxicity

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The present study examined the possible involvement of the lipoxygenase (LOX) pathway in cisplatin (CPT)-induced nephrotoxicity.

Methods

Wistar albino rats were challenged with CPT IP injection (7.5 mg/kg) and were sacrificed after one week. Signs of renal dysfunction, including urea and creatinine clearance levels and renal histological structure, were investigated. Gene and protein expression levels of different LOX pathway enzymes and products, including 5-LOX, 12-LOX, 15-LOX, 5-LOX activating protein (FLAP), leukotriene A4 hydrolase (LTA4 hydrolase), leukotriene C4 synthase (LTC4 synthase), LTB4 receptor, and cysteinyl (cys) LT receptor types 1 and 2, were also determined in the kidneys using real-time PCR and western blotting, respectively. The serum and kidney levels of LTB4 and inflammatory markers were also estimated.

Results

CPT renal toxicity was established as the creatinine and urea clearance levels were significantly reduced, while the serum levels of creatinine and urea were markedly increased. We reported a considerable up-regulation in the mRNA and protein expression levels of 5-LOX, FLAP, 12-LOX, LTA4 hydrolase, LTC4 synthase, LTB4 receptor, and Cys LT receptor types 1 and 2, while 15-LOX expression did not significantly change in the CPT group. Additionally, LTB4 and inflammatory indicators in serum and renal levels were elevated significantly in the CPT group. Histopathological examination clearly showed the nephrotoxic changes in the renal tissues of CPT-challenged animals.

Conclusions

Our findings suggested, for the first time, the participation of LOX enzymes and products in the signaling pathway leading to CPT-associated nephrotoxicity, which could be the foundation stone for combining LOX pathway attenuators with CPT therapy to decrease CPT-associated renal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madias NE, Harrington JT (1978) Platinum nephrotoxicity. Am J Med 65(2):307–314. doi:10.1016/0002-9343(78)90825-2

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32(7):685–690

    Article  CAS  PubMed  Google Scholar 

  3. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518. doi:10.3390/toxins2112490

    Article  CAS  Google Scholar 

  4. Conti M, De Giorgi U, Tazzari V, Bezzi F, Baccini C (2004) Clinical pharmacology of intraperitoneal cisplatin-based chemotherapy. J Chemother 16(5):23–25

    Article  CAS  PubMed  Google Scholar 

  5. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14(1):1–10

    Article  CAS  PubMed  Google Scholar 

  6. Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300(1):142–148

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Hanigan MH (2003) Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 306(3):988–994. doi:10.1124/jpet.103.052225

    Article  CAS  PubMed  Google Scholar 

  8. Reinhold SW, Vitzthum H, Filbeck T, Wolf K, Lattas C, Riegger GA, Kurtz A, Kramer BK (2006) Gene expression of 5-, 12-, and 15-lipoxygenases and leukotriene receptors along the rat nephron. Am J Physiol Renal Physiol 290(4):F864–872. doi:10.1152/ajprenal.00169.2005

    Article  CAS  PubMed  Google Scholar 

  9. Lianos EA, Rahman MA, Dunn MJ (1985) Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis. J Clin Invest 76(4):1355–1359. doi:10.1172/JCI112110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Badr KF (1992) Sepsis-associated renal vasoconstriction: potential targets for future therapy. Am J Kidney Dis 20(3):207–213

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222(5191):385–386

    Article  CAS  PubMed  Google Scholar 

  13. Kociba RJ, Sleight SD (1971) Acute toxicologic and pathologic effects of cis-diamminedichloroplatinum (NSC-119875) in the male rat. Cancer Chemother Rep 55(1):1–8

    CAS  PubMed  Google Scholar 

  14. Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83(6):866–869. doi:10.1002/(SICI)1097-0215(19991210)83:6<866:AID-IJC34>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  15. Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52(1):13–18. doi:10.1007/s00280-003-0620-1

    Article  CAS  PubMed  Google Scholar 

  16. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121. doi:10.1159/000086055

    Article  CAS  PubMed  Google Scholar 

  17. Kolati SR, Kasala ER, Bodduluru LN, Mahareddy JR, Uppulapu SK, Gogoi R, Barua CC, Lahkar M (2015) BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-kappaB pathway. Environ Toxicol Pharmacol 39(2):690–699. doi:10.1016/j.etap.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  18. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124. doi:10.1097/MAJ.0b013e31812dfe1e

    Article  PubMed  Google Scholar 

  19. Nakao A, Watanabe T, Ohishi N, Toda A, Asano K, Taniguchi S, Nosaka K, Noiri E, Suzuki T, Sakai T, Kurokawa K, Shimizu T, Kimura S (1999) Ubiquitous localization of leukotriene A4 hydrolase in the rat nephron. Kidney Int 55(1):100–108. doi:10.1046/j.1523-1755.1999.00257.x

    Article  CAS  PubMed  Google Scholar 

  20. Badr KF (1992) Five-lipoxygenase products in glomerular immune injury. J Am Soc Nephrol 3(4):907–915

    CAS  PubMed  Google Scholar 

  21. Evans JF (2002) Cysteinyl leukotriene receptors. Prostaglandins Other Lipid Mediat 68–69:587–597

    Article  PubMed  Google Scholar 

  22. Wu SH, Bresnahan BA, Lianos EA (1993) Hemodynamic role of arachidonate 12- and 5-lipoxygenases in nephrotoxic serum nephritis. Kidney Int 43(6):1280–1285

    Article  CAS  PubMed  Google Scholar 

  23. Sala A, Folco G (2001) Neutrophils, endothelial cells, and cysteinyl leukotrienes: a new approach to neutrophil-dependent inflammation? Biochem Biophys Res Commun 283(5):1003–1006. doi:10.1006/bbrc.2001.4865

    Article  CAS  PubMed  Google Scholar 

  24. Antonipillai I, Nadler JL, Robin EC, Horton R (1987) The inhibitory role of 12- and 15-lipoxygenase products on renin release. Hypertension 10(1):61–66

    Article  CAS  PubMed  Google Scholar 

  25. Munger KA, Montero A, Fukunaga M, Uda S, Yura T, Imai E, Kaneda Y, Valdivielso JM, Badr KF (1999) Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc Natl Acad Sci USA 96(23):13375–13380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400(6742):378–382. doi:10.1038/22572

    Article  CAS  PubMed  Google Scholar 

  27. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176

    Article  CAS  PubMed  Google Scholar 

  28. Rabb H, O’Meara YM, Maderna P, Coleman P, Brady HR (1997) Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int 51(5):1463–1468

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki M, Hori MT, Hino T, Golub MS, Tuck ML (1997) Elevated 12-lipoxygenase activity in the spontaneously hypertensive rat. Am J Hypertens 10(4 Pt 1):371–378

    CAS  PubMed  Google Scholar 

  30. Gonzalez-Nunez D, Sole M, Natarajan R, Poch E (2005) 12-Lipoxygenase metabolism in mouse distal convoluted tubule cells. Kidney Int 67(1):178–186. doi:10.1111/j.1523-1755.2005.00068.x

    Article  CAS  PubMed  Google Scholar 

  31. Montero A, Uda S, Kelavkar U, Yoshimura A, Badr KF, Munger KA (2003) Increased 5-lipoxygenase activating protein in immune-mediated experimental nephritis. J Nephrol 16(5):682–690

    CAS  PubMed  Google Scholar 

  32. Ago H, Okimoto N, Kanaoka Y, Morimoto G, Ukita Y, Saino H, Taiji M, Miyano M (2013) A leukotriene C4 synthase inhibitor with the backbone of 5-(5-methylene-4-oxo-4,5-dihydrothiazol-2-ylamino) isophthalic acid. J Biochem 153(5):421–429. doi:10.1093/jb/mvt007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noiri E, Yokomizo T, Nakao A, Izumi T, Fujita T, Kimura S, Shimizu T (2000) An in vivo approach showing the chemotactic activity of leukotriene B(4) in acute renal ischemic-reperfusion injury. Proc Natl Acad Sci USA 97(2):823–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel NS, Cuzzocrea S, Chatterjee PK, Di Paola R, Sautebin L, Britti D, Thiemermann C (2004) Reduction of renal ischemia-reperfusion injury in 5-lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor zileuton. Mol Pharmacol 66(2):220–227. doi:10.1124/mol.66.2.220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Plane for Science, Technology and Innovation (MAARIFAH)-King Abdulaziz City for Science and Technology-the Kingdome of Saudi Arabia, Award Number (MED894-08-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama A. Alkhamees.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhamees, O.A., Alroujayee, A.S., Abuohashish, H.M. et al. Possible involvement of the lipoxygenase and leukotriene signaling pathways in cisplatin-mediated renal toxicity. Cancer Chemother Pharmacol 80, 55–64 (2017). https://doi.org/10.1007/s00280-017-3331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3331-8

Keywords

Navigation