Cancer Chemotherapy and Pharmacology

, Volume 79, Issue 3, pp 545–558 | Cite as

An allometric pharmacokinetic/pharmacodynamics model for BI 893923, a novel IGF-1 receptor inhibitor

  • Melanie I. Titze
  • Otmar Schaaf
  • Marco H. Hofmann
  • Michael P. Sanderson
  • Stephan K. Zahn
  • Jens Quant
  • Thorsten Lehr
Original Article



BI 893923 is a novel IGF1R/INSR inhibitor with promising anti-tumor efficacy. Dose-limiting hyperglycemia has been observed for other IGF1R/INSR inhibitors in clinical trials. To counterbalance anti-tumor efficacy with the risk of hyperglycemia and to determine the therapeutic window, we aimed to develop a translational pharmacokinetic/pharmacodynamics model for BI 893923. This aimed to translate pharmacokinetics and pharmacodynamics from animals to humans by an allometrically scaled semi-mechanistic model.


Model development was based on a previously published PK/PD model for BI 893923 in mice (Titze et al., Cancer Chemother Pharmacol 77:1303–1314, 13). PK and blood glucose parameters were scaled by allometric principles using body weight as a scaling factor along with an estimation of the parameter exponents. Biomarker and tumor growth parameters were extrapolated from mouse to human using the body weight ratio as scaling factor.


The allometric PK/PD model successfully described BI 893923 pharmacokinetics and blood glucose across mouse, rat, dog, minipig, and monkey. BI 893923 human exposure as well as blood glucose and tumor growth were predicted and compared for different dosing scenarios. A comprehensive risk–benefit analysis was conducted by determining the net clinical benefit for each schedule. An oral dose of 2750 mg BI 893923 divided in three evenly distributed doses was identified as the optimal human dosing regimen, predicting a tumor growth inhibition of 90.4% without associated hyperglycemia.


Our model supported human therapeutic dose estimation by rationalizing the optimal efficacious dosing regimen with minimal undesired effects. This modeling approach may be useful for PK/PD scaling of other IGF1R/INSR inhibitors.


PK/PD modeling Allometric scaling IGF1R/INSR inhibitor Net clinical benefit Human therapeutic dose estimation 



Body weight


Brain weight


Insulin-like growth factor


Insulin receptor


Interindividual variability


Net clinical benefit






Tumor growth inhibition


Duration of hyperglycemia


Visual predictive check



We thank the following colleagues for their excellent technical assistance: Ida Dinold, Norbert Eidkum, Stefan Fischer, Astrid Jeschko, Matthias Klemencic, Katharina Mayr, Reiner Meyer, Thomas Pecina, Christian Salamon, Michaela Streicher, and Susanne Wollner-Gaida.

Compliance with ethical standards

Conflict of interest

Thorsten Lehr has received research grants from Boehringer Ingelheim and is a consultant member of Boehringer Ingelheim. Otmar Schaaf, Marco H. Hofmann, Michael P. Sanderson, Stephan K. Zahn, and Jens Quant are employees of Boehringer Ingelheim.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

280_2017_3252_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2156 KB)


  1. 1.
    Hewish M, Chau I, Cunningham D (2009) Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Pat Anticancer Drug Discov 4:54–72. doi: 10.2174/157489209787002515 CrossRefPubMedGoogle Scholar
  2. 2.
    Buck E, Mulvihill M (2011) Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer. Expert Opin Investig Drugs 20:605–621. doi: 10.1517/13543784.2011.558501 CrossRefPubMedGoogle Scholar
  3. 3.
    De Meyts P, Palsgaard J, Sajid W, Theede A-M, Aladdin H (2002) Structural biology of insulin and IGF-1 receptors. Nat Rev Drug Discov 1:769–783. doi: 10.1038/nrd917 CrossRefPubMedGoogle Scholar
  4. 4.
    Louvi A, Accili D, Efstratiadis A (1997) Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 189:33–48. doi: 10.1006/dbio.1997.8666 CrossRefPubMedGoogle Scholar
  5. 5.
    Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169. doi: 10.1038/nrc3215 PubMedGoogle Scholar
  6. 6.
    Puzanov I, Lindsay CR, Goff L, Sosman J, Gilbert J, Berlin J (2015) A phase I study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor-1 and insulin receptors, in patients with advanced solid tumors. Clin Cancer Res 21:701–711. doi: 10.1158/1078-0432.CCR-14-0303 CrossRefPubMedGoogle Scholar
  7. 7.
    Becerra CR, Salazar R, Garcia-Carbonero R, Thomas AL, Vázquez-Mazón FJ, Cassidy J et al (2014) Figitumumab in patients with refractory metastatic colorectal cancer previously treated with standard therapies: a nonrandomized, open-label, phase II trial. Cancer Chemother Pharmacol 73:695–702. doi: 10.1007/s00280-014-2391-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Agoram BM, Martin SW, Graaf PH Van Der (2007) The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Discov Today 12:1018–1024. doi: 10.1016/j.drudis.2007.10.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716. doi: 10.1038/nrd1470 CrossRefPubMedGoogle Scholar
  10. 10.
    Mager DE, Jusko WJ (2008) Development of translational pharmacokinetic–pharmacodynamic models. Clin Pharmacol Ther 83:909–912. doi: 10.1038/clpt.2008.52 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zuideveld KP, Graaf PH Van Der, Peletier LA, Danhof M (2007) Allometric scaling of pharmacodynamic responses: application to 5-Ht 1 a receptor mediated responses from rat to man. Pharm Res. doi: 10.1007/s11095-007-9336-y PubMedGoogle Scholar
  12. 12.
    Yassen A, Olofsen E, Dahan A, Danhof M (2007) Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet 46:433–447CrossRefPubMedGoogle Scholar
  13. 13.
    Titze MI, Schaaf O, Hofmann MH, Sanderson MP, Zahn SK, Quant J et al (2016) A comprehensive pharmacokinetic/pharmacodynamics analysis of the novel IGF1R/INSR inhibitor BI 893923 applying in vitro, in vivo and in silico modelling techniques. Cancer Chemother Pharmacol 77:1303–1314. doi: 10.1007/s00280-016-3049-z CrossRefPubMedGoogle Scholar
  14. 14.
    Sanderson MP, Apgar J, Garin-Chesa P, Hofmann MH, Kessler D, Quant J et al (2015) BI 885578, a novel IGF1R/INSR tyrosine kinase inhibitor with pharmacokinetic properties that dissociate anti-tumor efficacy and perturbation of glucose homeostasis. Mol Cancer Ther 14:2762–2772. doi: 10.1158/1535-7163.MCT-15-0539 CrossRefPubMedGoogle Scholar
  15. 15.
    Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM Users Guide. Icon Dev Solut Ellicott City, Maryland, USA 1998Google Scholar
  16. 16.
    Zhou H (2003) Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol 43:211–227. doi: 10.1177/0091270002250613 CrossRefPubMedGoogle Scholar
  17. 17.
    Huang Q, Riviere JE (2014) The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin Drug Metab Toxicol 10:1241–1253. doi: 10.1517/17425255.2014.934671 CrossRefPubMedGoogle Scholar
  18. 18.
    Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504. doi: 10.1023/A:1012299115260 CrossRefPubMedGoogle Scholar
  19. 19.
    ICRP P (2002) Ann ICRP 32:1–277Google Scholar
  20. 20.
    NIH. Common Terminology Criteria for Adverse Events (CTCAE) 2009:45. Accessed 6 Aug 2015
  21. 21.
    Singer DE, Chang Y, Fang MC, Borowsky LH, Pomernacki NK, Udaltsova N et al (2009) The net clinical benefit of warfarin anticoagulation in atrial fibrillation. Ann Intern Med 151:297–305CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095CrossRefPubMedGoogle Scholar
  23. 23.
    Minipigs EG (2009) Organ weight Ellegaard Göttingen Minipigs 2009:1–12. Accessed 6 March 2014
  24. 24.
    Szabo J, Cowan WM (1984) A Stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J Comp Neurol 222:265–300CrossRefPubMedGoogle Scholar
  25. 25.
    Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E et al (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101. doi: 10.1158/0008-5472.CAN-03-2524 CrossRefPubMedGoogle Scholar
  26. 26.
    Elassaiss-schaap J (2010) Allometric scaling in oncology disease progression from xenograft tumor growth to human non-small-cell lung cancer. PAGE, BerlinGoogle Scholar
  27. 27.
    Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, Langner C (2011) Value of tumor size as a prognostic variable in colorectal cancer a critical reappraisal. Am J Clin Oncol 34:43–49. doi: 10.1097/COC.0b013e3181cae8dd CrossRefPubMedGoogle Scholar
  28. 28.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R et al (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 29:1963–1972. doi: 10.2337/dc06-9912 CrossRefPubMedGoogle Scholar
  29. 29.
    Mager DE, Woo S, Jusko WJ (2009) Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 24:16–24CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Danhof M, Jongh J De, Lange ECM De, Pasqua O Della, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400. doi: 10.1146/annurev.pharmtox.47.120505.105154 CrossRefPubMedGoogle Scholar
  31. 31.
    Cosson VF, Fuseau E, Efthymiopoulos C, Bye A (1997) Mixed effect modeling of sumatriptan pharmacokinetics during drug development. I: interspecies allometric scaling. J Pharmacokinet Biopharm 25:149–167CrossRefPubMedGoogle Scholar
  32. 32.
    Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10:201–227. doi: 10.1007/BF01062336 CrossRefPubMedGoogle Scholar
  33. 33.
    Danhof M, Lange ECM De, Pasqua OE Della, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacodynamic (PK–PD) modeling in translational drug research. Trends Pharmacol Sci 29:186–191. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  34. 34.
    Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W et al (2009) BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 8:3341–3349. doi: 10.1158/1535-7163.MCT-09-0499 CrossRefPubMedGoogle Scholar
  35. 35.
    Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D et al (2009) Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem 1:1153–1171. doi: 10.4155/fmc.09.89 CrossRefPubMedGoogle Scholar
  36. 36.
    Busaidy NL, Farooki A, Dowlati A, Perentesis JP, Dancey JE, Doyle LA et al (2012) Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J Clin Oncol 30:2919–2928. doi: 10.1200/JCO.2011.39.7356 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zager MG, Kozminski K, Pascual B, Ogilvie KM, Sun S (2014) Preclinical PK/PD modeling and human efficacious dose projection for a glucokinase activator in the treatment of diabetes. J Pharmacokinet Pharmacodyn 41:127–139. doi: 10.1007/s10928-014-9351-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Melanie I. Titze
    • 1
  • Otmar Schaaf
    • 2
  • Marco H. Hofmann
    • 2
  • Michael P. Sanderson
    • 2
  • Stephan K. Zahn
    • 2
  • Jens Quant
    • 2
  • Thorsten Lehr
    • 1
  1. 1.Clinical PharmacySaarland UniversitySaarbrückenGermany
  2. 2.Boehringer Ingelheim RCV GmbH & Co KGViennaAustria

Personalised recommendations