Skip to main content

Advertisement

Log in

Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Since the late 1990s, there has been rapid multiplication of data on the anti-cancer properties of artemisinins. This article reviews the status of progress of artemisinin and its derivatives as anti-cancer agents in clinical trials, case reports, and in vitro/in vivo studies. Particular attention is laid on the combinations of artemisinins and synthetic chemodrugs to enhance the latter’s efficacy. An attempt is here made to rationalize the synergistic effects of a few common anti-cancer drugs of the anthracycline, taxane, anti-metabolite, and platinum-based drug families. The various pathways that mediate the action of artemisinins as reported over the past decade are here summarized highlighting also the biomarkers that could be used to better predict the efficacy of the sesquiterpenoids. Their main action seems to be directed toward stalling tumor cell proliferation through cell cycle arrest mediated by reactive oxygen species (ROS). The emergence of artemisinins’ nano-based formulations in combination with chemodrugs to enhance drug bioavailability and targeting as well as immunotherapy is also reviewed. The enhanced efficacy of artemisinin dimers compared to the parent molecules and standard chemotherapy is analyzed. While these therapies hold promises, it may be premature to conclude on their efficacy in the absence of clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17(10):1217–1220

    Article  CAS  PubMed  Google Scholar 

  2. Lai H, Singh NP (1995) Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 91:41–46

    Article  CAS  PubMed  Google Scholar 

  3. Moore JC, Lai H, Li J, McDougall JA, Singh NP, Chou CK (1995) Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett 98:83–87

    Article  CAS  PubMed  Google Scholar 

  4. Singh NP, Lai H (2001) Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci 70:49–56

    Article  CAS  PubMed  Google Scholar 

  5. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–773

    CAS  PubMed  Google Scholar 

  6. Singh NP, Lai H (2004) Artemisinin Induces Apoptosis in Human Cancer Cells. Anticancer Res 24:2277–2280

    CAS  PubMed  Google Scholar 

  7. Das AK (2015) Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 5(2):93–102. doi:10.4103/2141-9248.153609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. doi:10.1155/2012/247597

    PubMed  Google Scholar 

  9. Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowand M, Finlayson C et al (2015) A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2:82–90

    Article  PubMed  Google Scholar 

  10. Deliu IC, Ciurea P, Neagoe D, Bezna MC, Gheonea IA et al (2015) Evaluation of angiogenesis in colorectal cancer. Curr Health Sci J 41(2):145–151

    Google Scholar 

  11. Jansen FH, Adoubi I, J C KC, DE Cnodder T, Jansen N, Tschulakow A, Efferth T (2011) First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res 31(12):4417–4422

    CAS  PubMed  Google Scholar 

  12. Zhang ZY, Yu SQ, Miao LY, Huang XY, Zhang XP, Zhu YP et al (2008) Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: A randomized controlled trial. J Chin Integr Med 6(2):134–138

    Article  CAS  Google Scholar 

  13. Ericsson T, Blank A, von Hagens C, Ashton M, Äbelö A (2014) Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur J Clin Pharmacol 70(12):1453–1463. doi:10.1007/s00228-014-1754-2

    Article  CAS  PubMed  Google Scholar 

  14. Genovese RF, Newman DB, Brewer TG (2000) Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav 67(1):37–44

    Article  CAS  PubMed  Google Scholar 

  15. König M, von Hagens C, Hoth S, Baumann I, Walter-Sack I, Edler L et al (2016) Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother Pharmacol 77(2):413–427. doi:10.1007/s00280-016-2960-7

    Article  PubMed  CAS  Google Scholar 

  16. Michaelsen F-WS, Saeed MM, Schwarzkopf J, Efferth T (2015) Activity of Artemisia annua and artemisinin derivatives in prostate carcinoma. Phytomedicine 22:1223–1231

    Article  CAS  PubMed  Google Scholar 

  17. Singh NP, Verma KB (2002) Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch. Oncol 10(4):279–280

    Google Scholar 

  18. Singh NP, Panwar VK (2006) Case Report of a Pituitary Macroadenoma Treated With Artemether. Integr Cancer Ther 5(4):391–394

    Article  PubMed  Google Scholar 

  19. Rowen RJ (2002) Artemisinin: from Malaria to cancer treatment. Townsend Letter for Doctors & Patients pp 86–88

  20. Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A et al (2005) Artesunate in the treatment of metastatic uveal melanoma–first experiences. Oncol Rep 14(6):1599–1603

    CAS  PubMed  Google Scholar 

  21. The Cancer Cure Foundation. http://www.cancure.org/12-links-page/43-artemesia. Accessed 11 Oct 2016

  22. Uhl M, Schwab S, Efferth T (2016) Fatal liver and bone marrow toxicity by combination treatment of dichloroacetate and artesunate in a glioblastoma multiforme patient: case report and review of the literature. Front Oncol 6:204–209. doi:10.3389/fonc.2016.00204

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25(12):1555–1561

    Article  CAS  PubMed  Google Scholar 

  24. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M et al (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2(8):e693. doi:10.1371/journal.pone.0000693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wu G-S, Lu J-J, Guo J-J, Huang M-Q, Gan L, Chen X-P et al (2013) Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep 65:453–459

    Article  CAS  PubMed  Google Scholar 

  26. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M et al (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  CAS  PubMed  Google Scholar 

  27. Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D et al (2009) Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1a and P-glycoprotein overexpression. Br J Pharmacol 156:1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G et al (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317:2479–2489

    Article  CAS  PubMed  Google Scholar 

  29. Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafrè S, Carcangiu ML et al (2015) Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells. Oncotarget 6(7):5275–5291

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH et al (2010) Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both In vitro and In vivo. Cancer Lett 293(1):99–108

    Article  CAS  PubMed  Google Scholar 

  31. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: In vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  CAS  PubMed  Google Scholar 

  32. Zhao C, Gao W, Chen T (2014) Synergistic induction of apoptosis in A549 cells by dihydroartemisinin and gemcitabine. Apoptosis 19(4):668–681

    Article  CAS  PubMed  Google Scholar 

  33. Zhao C, Qin G, Gao W, Chen J, Liu H, Xi G et al (2014) Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells. Cell Signal 26(10):2223–2233. doi:10.1016/j.cellsig.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  34. Gravett AM, Liu WM, Krishna S, Chan W-C, Haynes RK, Wilson NL et al (2010) In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 67(3):569–577

    Article  PubMed  CAS  Google Scholar 

  35. van Huijsduijnen RH, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G et al (2013) Anticancer Properties of Distinct Antimalarial Drug Classes. PLoS One 8(12):e82962. doi:10.1371/journal.pone.0082962

    Article  CAS  Google Scholar 

  36. Tan X, Chen YI, Chin B, Bieber M, Teng N et al (2014) Artemisinin derivatives synergize with paclitaxel by targeting foxm1 through raf/mek/mapk signaling pathway in ovarian cancer. Abstract 0258, 15th Biennial Meeting of the International Gynecologic Cancer Society, 8–11 November 2014, Australia

  37. Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY et al (2005) Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118(Pt 4):795–806

    Article  CAS  PubMed  Google Scholar 

  38. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681. doi:10.1091/mbc.E14-04-0916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu M-X (2016) Effect of artemisinin combined with cisplatin intervention on epithelial-mesenchymal transition, angiogenesis and ATP generation in MGC-803 gastric cancer cell lines. J Hainan Med Univer 22(18) (Abstract only available, article in Chinese)

  40. Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang X et al (2015) Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol Ther 16(10):1548–1556. doi:10.1080/15384047.2015.1071738

    Article  CAS  PubMed  Google Scholar 

  41. Feng X, Li L, Jiang H, Jiang K, Jin Y et al (2014) Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: Involvement of apoptosis and autophagy. Biochem Biophys Res Commun 444(3):376–381. doi:10.1016/j.bbrc.2014.01.053

    Article  CAS  PubMed  Google Scholar 

  42. Chen H-H, Zhou H-J, Wang W-Q, Wu G-D (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53:423–432

    Article  CAS  PubMed  Google Scholar 

  43. Zhou HJ, Zhang JL, Li A, Wang Z, Lou XE (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas In vivo and inhibits murine Lewis lung carcinoma cell line growth In vitro. Cancer Chemother Pharmacol 66(1):21–29

    Article  CAS  PubMed  Google Scholar 

  44. O’Neill PM, Barton VE, Ward SA (2010) The Molecular Mechanism of Action of Artemisinin—the Debate Continues. Molecules 15:1705–1721. doi:10.3390/molecules15031705

    Article  PubMed  CAS  Google Scholar 

  45. Efferth T (2015) Artemisinin–second career as anticancer drug? World J Tradit Chin Med 1(4):2–25

    Article  Google Scholar 

  46. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Q, Weina P, Hickman M (2013) The use of artemisinin compounds as angiogenesis inhibitors to treat cancer, Chap. 7, 10.5772/54109

  48. Dong F, Tian H, Yan S, Li L, Dong X et al (2015) Dihydroartemisinin inhibits endothelial cell proliferation through the suppression of the ERK signaling pathway. Int J Mol Med 35(5):1381–1387. doi:10.3892/ijmm.2015.2140

    CAS  PubMed  Google Scholar 

  49. Zhou Y, Li W, Xiao Y (2016) Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chem Biol. doi:10.1021/acschembio.5b01043

    Google Scholar 

  50. Tran KQ, Tin AS, Firestone GL (2014) Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling. Anticancer Drugs 25(3):270–281. doi:10.1097/CAD.0000000000000054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23(4):370–379. doi:10.1097/CAD.0b013e32834f6ea8

    Article  CAS  PubMed  Google Scholar 

  52. Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Mondiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the Cyclin-dependent Kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284(4):2203–2213. doi:10.1074/jbc.M804491200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen Y et al (2011) Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol 11(12):2039–2046. doi:10.1016/j.intimp.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  54. Chen K, Shou LM, Lin F, Duan WM, Wu MY, Xie X et al (2014) Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anticancer Drugs 25(6):652–662. doi:10.1097/CAD.0000000000000089

    PubMed  Google Scholar 

  55. Jiang Z, Chai J, Chuang HH, Li S, Wang T, Cheng Y et al (2012) Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anticancer Drugs 23(6):606–613. doi:10.1097/CAD.0b013e328350e8ac

    Article  CAS  PubMed  Google Scholar 

  56. Huang Z, Huang X, Jiang D, Zhang Y, Huang B, Luo G (2016) Dihydroartemisinin inhibits cell proliferation by induced G1 arrest and apoptosis in human nasopharyngealcarcinoma cells. J Can Res Ther 12(1):244–247

    Article  Google Scholar 

  57. Sun H, Meng X, Han J, Zhang Z, Wang B et al (2013) Anti-cancer activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour Biol 34(6):3791–3800. doi:10.1007/s13277-013-0963-0

    Article  CAS  PubMed  Google Scholar 

  58. Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X et al (2010) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB. J Cancer Res Clin Oncol 136(6):897–903

    Article  CAS  PubMed  Google Scholar 

  59. D’Alessandro S, Basilico N, Corbett Y, Scaccabarozzi D, Omodeo-Salè F et al (2011) Hypoxia modulates the effect of dihydroartemisinin on endothelial cells. Biochem Pharmacol 82(5):476–484. doi:10.1016/j.bcp.2011.06.002

    Article  PubMed  CAS  Google Scholar 

  60. Wartenberg M, Wolf S, Budde P, Grünheck F, Acker H, Hescheler J et al (2003) The Antimalaria Agent Artemisinin Exerts Antiangiogenic Effects in Mouse Embryonic Stem Cell-Derived Embryoid Bodies. Lab Invest 83(11):1647–1655

    Article  CAS  PubMed  Google Scholar 

  61. Jia J, Qin Y, Zhang L, Guo C, Wang Y et al (2016) Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol Med Rep 13(5):4461–4468. doi:10.3892/mmr.2016.5073

    CAS  PubMed  Google Scholar 

  62. Tong Y, Liu Y, Zheng H, Zheng L, Liu W et al (2016) Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget 7(21):31413–31428

    PubMed  PubMed Central  Google Scholar 

  63. Eling N, Lukas R, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:517–532

    Article  PubMed  PubMed Central  Google Scholar 

  64. Button RW, Lin F, Ercolano E, Vincent JH, Hu B, Hanemann CO et al (2014) Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 5:e1466. doi:10.1038/cddis.2014.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N et al (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron catalyzed lysosomal reactive oxygen species production. J Biol Chem 286(8):6587–6601

    Article  CAS  PubMed  Google Scholar 

  66. Steinbrück L, Pereira G, Efferth T (2010) Effects of artesunate on cytokinesis and G2/M cell cycle progression of tumour cells and budding yeast. Cancer Genom Proteom 7(6):337–346

    Google Scholar 

  67. Jeong DE, Song HJ, Lim S, Jeong Lee S, Lim JE et al (2015) Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 6(32):33046–33064

    PubMed  PubMed Central  Google Scholar 

  68. Greenshields AL, Shepherd TG, Hoskin DW (2016) Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog. doi:10.1002/mc.22474

    PubMed  Google Scholar 

  69. Jiao Y, Ge C-M, Meng Q-H, Cao J-P, Tong J, Fan S-J (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056

    Article  CAS  PubMed  Google Scholar 

  70. Wang Z, Hu W, Zhang J-L, Wu X-H, Zhou H-J (2012) Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2:103–112. doi:10.1016/j.fob.2012.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Du XX, Li YJ, Wu CL, Zhou JH, Han Y et al (2013) Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed Pharmacother 67(5):417–424. doi:10.1016/j.biopha.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  72. Lin R, Zhang Z, Chen L, Zhou Y, Zou P et al (2016) Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett 381(1):165–175. doi:10.1016/j.canlet.2016.07.033

    Article  CAS  PubMed  Google Scholar 

  73. Hui HY, Wu N, Wu M, Liu Y, Xiao SX et al Zhang MF (2016) Dihydroartemisinin suppresses growth of squamous cell carcinoma A431 cells by targeting the Wnt/β-catenin pathway. Anticancer Drugs 27(2):99–105. doi:10.1097/CAD.0000000000000307

  74. Kim SH, Kang SH, Kang BS (2016) Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma. Nutr Res Pract 10(4):393–397

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang N-D, Tan S-H, Ng S, Shi Y, Zhou J et al (2014) Artesunate Induces Cell Death in Human Cancer Cells via Enhancing Lysosomal Function and Lysosomal Degradation of Ferritin. J Biol Chem 289(48):33425–33441. doi:10.1074/jbc.M114.564567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mercer AE, Copple IM, Maggs JL, O’Neill PM, Park BK (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286(2):987–996. doi:10.1074/jbc.M110.144188

    Article  CAS  PubMed  Google Scholar 

  77. Du, JH., Zhang, HD., Ma, ZJ., Ji, KM. (2010) Artesunate induces oncosis-like cell death In vitro and has antitumor activity against pancreatic cancer xenografts In vivo. Cancer Chemother Pharma 65:895–902

    Article  CAS  Google Scholar 

  78. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5). doi:10.3109/10715761003667554

  79. Schieber M, Chandel NS (2014) ROS Function in Redox Signaling and Oxidative Stress. Curr Biol 24:R453–R462. doi:10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  81. Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32. doi:10.1017/S1462399409001239

    Article  PubMed  Google Scholar 

  82. Huang C, Ba Q, Yue Q, Li J, Li J, Chu R, Wang H (2013) Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction. Mol BioSyst 9:3091–3100. doi:10.1039/C3MB70342H

    Article  CAS  PubMed  Google Scholar 

  83. He Q, Shi J, Shen XL, An J, Sun H, Wang L et al (2010) Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9(10):819–824

    Article  CAS  PubMed  Google Scholar 

  84. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W et al (2008) Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19(2):184–191. doi:10.1016/j.niox.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246. doi:10.1007/s10637-012-9873-z

    Article  CAS  PubMed  Google Scholar 

  86. Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29:3807–3810

    CAS  PubMed  Google Scholar 

  87. Bhadra D, Bhadra S, Jain NK (2005) Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharmaceut Sci 8(3):467–482

    CAS  Google Scholar 

  88. Chen Y, Lin X, Park H, Greever R (2009) Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine 5(3):316–322. doi:10.1016/j.nano.2008.12.005

    CAS  PubMed  Google Scholar 

  89. Letchmanan K, Shen S-C, Kiong Ng W, Tan RBH (2015) Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles. Microencapsul 32(4):390–400. doi:10.3109/02652048.2015.1035684

    Article  CAS  Google Scholar 

  90. Dai L, Wang L, Deng L, Liu J, Lei J, Li D, He J (2014) Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung Cancer. Sci Rep 4:5871. doi:10.1038/srep05871

    CAS  PubMed  Google Scholar 

  91. Lu W-F, Chen S-F, Wen Z-Y, Li Q, Chen J-H (2012) In vitro evaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(L-lactic acid) amphiphilic block copolymeric micelles. J Appl Polym Sci. doi:10.1002/APP.38518

    Google Scholar 

  92. Righeschi C, Coronnello M, Mastrantoni A, Isacchi B, Bergonzi MC et al (2014) Strategy to provide a useful solution to effective delivery of dihydroartemisinin: Development, characterization and in vitro studies of liposomal formulations. Colloids Surf B Biointerfaces 116:121–127

    Article  CAS  PubMed  Google Scholar 

  93. Dadgar N, Esfahani MKM, Torabi S, Alavi SE, Akbarzadeh A (2013) Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer. Ind J Clin Biochem. doi:10.1007/s12291-013-0389-x

    Google Scholar 

  94. Sun Q, Teong B, Chen I-F, Chang SJ, Gao J, Kuo S-M (2014) Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells. J Biomed Mater Res Part B 102B:455–462

    Article  CAS  Google Scholar 

  95. Wang Z, Yu Y, Ma J, Zhang H, Zhang H, Wang X et al (2012) LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm 9:2646–2657. doi:10.1021/mp3002107

    Article  CAS  PubMed  Google Scholar 

  96. Dwivedi A, Mazumder A, du Plessis L, du Preez JL, Haynes RK, du Plessis J (2015) In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine 11(8):2041–2050. doi:10.1016/j.nano.2015.07.010

    CAS  PubMed  Google Scholar 

  97. Liu K, Dai L, Li C, Liu J, Wang L, Lei J (2016) Self-assembled targeted nanoparticles based on transferrin modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate. Sci Rep 6:29461. doi:10.1038/srep29461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu J, Zhu Y (2017) Lysosomes activating chain reactions against cancer cells with a pH-switched prodrug/procatalyst co-delivery nanosystem. J Mater Chem B 7(5):996–1004. doi:10.1039/C6TB02820A

    Article  Google Scholar 

  99. Ma W, Xu A, Ying J, Li B, Jin Y (2015) Biodegradable core–shell copolymer-phospholipid nanoparticles for combination chemotherapy: an in vitro study. J Biomed Nanotechnol 11:1193–1200

    Article  CAS  PubMed  Google Scholar 

  100. Li X-Y, Zhao Y, Sun M-G, Shi J-F, Ju R-J, Zhang C-X et al (2014) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35:5591–5604

    Article  CAS  PubMed  Google Scholar 

  101. Fröhlich T, Karagöz AC, Reiter C, Tsogoeva SB (2016) Artemisinin-derived dimers: potent antimalarial and anti-cancer agents. J Med Chem. doi:10.1021/acs.jmedchem.5b01380

    Google Scholar 

  102. Alagbala AA, McRiner AJ, Borstnik K, Labonte T, Chang W et al (2006) Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 49:7836–7842

    Article  CAS  PubMed  Google Scholar 

  103. Stockwin LH, Han B, Yu SX, Hollingshead MG, Elsohly MA et al (2009) Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int J Cancer 125:1266–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Posner GH, McRiner AJ, Paik IH, Sur S, Borstnik K et al (2004) Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J Med Chem 47:1299–1301

    Article  CAS  PubMed  Google Scholar 

  105. Lombard MC, N’Da DD, Breytenbach JC, Kolesnikova NI, Tran Van Ba C, Wein S, Norman J, Denti P, Vial H, Wiesner L (2012) Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur J Pharm Sci 47:834–841

    Article  CAS  PubMed  Google Scholar 

  106. Singh NP, Lai HC, Park JS, Gerhardt TE, Kim BJ, Wang S, Sasaki T (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31:4111–4114

    CAS  PubMed  Google Scholar 

  107. Fox JM, Moynihan JR, Mott BT, Mazzone JR, Anders NM et al (2016) Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs. Oncotarget 7(6):7268–7279

    PubMed  PubMed Central  Google Scholar 

  108. Beekman AC, Barentsen ARW, Woerdenbag HJ, Van Uden W, Pras N, Konings AWT, El-Feraly FS, Galal AM, Wikstrom HV (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–330

    Article  CAS  PubMed  Google Scholar 

  109. Posner GH, Paik I-H, Sur S, McRiner AJ, Borstnik K, Xie S, Shapiro TA (2003) Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J Med Chem 46:1060–1065

    Article  CAS  PubMed  Google Scholar 

  110. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3(5):436–443. doi:10.1158/2326-6066.CIR-15-0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yao W, Wang F, Wang H (2016) Immunomodulation of artemisinin and its derivatives. Sci Bull. doi:10.1007/s11434-016-1105-z

    Google Scholar 

  112. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. doi:10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29(11):1275–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431–446

    Article  CAS  PubMed  Google Scholar 

  115. Hunt S, Yoshida M, Davis CEJ, Greenhill NS, Davis PF (2015) An extract of the medicinal plant Artemisia annua modulates production of inflammatory markers in activated neutrophils. J Inflamm Res 8:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Williams CB, Yeh ES, Soloff AC (2016) Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2:15025–15046. doi:10.1038/npjbcancer.2015.25

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li B, Zhang R, Li J et al (2008) Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kappa B activation. Int Immunopharmacol 8:379–389

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Huang ZQ, Wang CQ et al (2011) Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase Cdelta/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin Exp Pharmacol Physiol 38:11–18

    Article  CAS  PubMed  Google Scholar 

  119. Yu WY, Kan WJ, Yu PX et al (2012) Anti-inflammatory effect and mechanism of artemisinin and dihydroartemisinin. China J Chin Mater Med 37:2618–2621. (in Chinese)

    CAS  Google Scholar 

  120. Wu B, Hu K, Li S et al (2012) Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol Rep 27:101–108

    PubMed  Google Scholar 

  121. Kitamura T, Qian B-Z, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86. doi:10.1038/nri3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W et al (2014) Inactivation of the PI3K p110δ breaks regulatory T cell-mediated immune tolerance to cancer. Nature 510(7505):407–411. doi:10.1038/nature13444

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun XZ (1991) Experimental study on the immunosuppressive effects of qinghaosu and its derivative. Chin J Mod Dev Tradit Med 11:37–38 (in Chinese)

    CAS  Google Scholar 

  124. Wang JX, Tang W, Shi LP, Wan J, Zhou R, Ni J et al (2007) Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. Br J Pharmacol 150:652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang DM, Liew FY (1993) Effects of qinghaosu (artemisinin) and its derivatives on experimental cutaneous leishmaniasis. Parasitology 106(Pt 1):7–11

    Article  CAS  PubMed  Google Scholar 

  126. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2012) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45

    Article  PubMed Central  CAS  Google Scholar 

  127. Langroudi L, Hassan ZM, Ebtekar M, Mahdavi M, Pakravan N, Noori S (2010) A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol 10:1055–1061

    Article  CAS  PubMed  Google Scholar 

  128. Zhang LX, Liu ZN, Ye J, Sha M, Qian H, Bu XH et al (2014) Artesunate exerts an antiimmunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression. Cell Biol Int 38:639–646

    Article  CAS  PubMed  Google Scholar 

  129. Ramacher M, Umansky V, Efferth T (2009) Effect of artesunate on immune cells in ret-transgenic mouse melanoma model. Anti Cancer Drug 20:910–917

    Article  CAS  Google Scholar 

  130. Mohamadabadi MA, Hassan ZM, Hosseini AZ, Gholamzad M, Noori S, Mahdavi M et al (2013) Arteether exerts antitumor activity and reduces CD4 + CD25 + FOXP3 + T-reg cells in vivo. Iran J Immunol 10:139–149

    Google Scholar 

  131. Noori S, Hassan ZM (2011) Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol 271:67–72

    Article  CAS  PubMed  Google Scholar 

  132. Caspi R (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8(12):970–976. doi:10.1038/nri2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schieber M, Chandel NS (2014) ROS Function in Redox Signaling and Oxidative Stress. Curr Biol 24(10):R453–R462. doi:10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen X, Song M, Zhang B, Zhang Y (2016) Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxidative Medicine and Cellular Longevity. doi:10.1155/2016/1580967

    Google Scholar 

  135. Vieira FGK, Di Pietro PF, Boaventura BCB, Ambrosi C, Rockenbach G et al (2011) Factors associated with oxidative stress in women with breast cancer. Nutr Hosp 26(3):528–536

    Google Scholar 

  136. Mecdad AA, Ahmed MH, ElHalwagy MEA, Afify MMM (2011) A study on oxidative stress biomarkers and immunomodulatory effects of pesticides in pesticide-sprayers. Egyptian. J Forensic Sci 1:93–98. doi:10.1016/j.ejfs.2011.04.012

    Google Scholar 

  137. Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P et al (2014) A review of the application of inflammatory biomarkers in epidemiologic. Cancer Res. doi:10.1158/1055-9965.EPI-14-0064

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Mauritius Research Council for funding drug delivery research and to Bionexx Company (Madagascar) for funding a project related to artemisinin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanjay Jhurry.

Ethics declarations

Conflict of interest

The authors collaborate with Bionexx Company (Madagascar), a supplier of artemisinin, in developing nano-based formulations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaw-Luximon, A., Jhurry, D. Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother Pharmacol 79, 451–466 (2017). https://doi.org/10.1007/s00280-017-3251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3251-7

Keywords

Navigation