Skip to main content

Advertisement

Log in

Accumulation of alpha-fluoro-beta-alanine and fluoro mono acetate in a patient with 5-fluorouracil-associated hyperammonemia

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

High-dose 5-fluorouracil (5-FU) containing chemotherapy occasionally causes hyperammonemia and can be lethal. However, the mechanism of 5FU-associated hyperammonemia has not been known. The aim of this study was to reveal the pharmacokinetics of 5-FU-associated hyperammonemia in a recurrent colorectal cancer patient with end-stage renal disease (ESRD).

Methods

We experienced a case of hyperammonemia during mFOLFOX6 plus bevacizumab therapy for recurrent colorectal cancer. He was a dialyzed patient due to diabetic nephropathy and was registered to prospective blood sampling for pharmacokinetics analysis during chemotherapy. Blood concentrations of 5-FU and its catabolites were determined by inductively coupled plasma-mass spectrometry.

Results

The patient developed hyperammonemia encephalopathy 41 h after the initiation of continuous 5-FU infusion (on the third day). Before onset of hyperammonemia encephalopathy, serum alpha-fluoro-beta-alanine (FBAL, 59.2 µg/ml) and fluoro mono acetate (FMA, 905.8 ng/ml) were gradually increased. After hemodialysis for hyperammonemia, FBAL and FMA were collaterally decreased and his symptom was improved. Other intermediate catabolites of 5-FU, dihydrofluorouracil, and alpha-fluoro-beta-ureidopropionic acid were not changed.

Conclusion

We found increases of serum FBAL and FMA under the condition of hyperammonemia in the patient with ESRD during mFOLFOX6 plus bevacizumab therapy. This research supported the hypothesis that impairment of tricarboxylic acid (TCA) cycle by FMA would cause 5-FU-associated hyperammonemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664

    Article  CAS  PubMed  Google Scholar 

  2. Koenig H, Patel A (1970) Biochemical basis for fluorouracil neurotoxicity. The role of Krebs cycle inhibition by fluoroacetate. Arch Neurol 23:155–160. doi:10.1001/archneur.1970.00480260061008

    Article  CAS  PubMed  Google Scholar 

  3. Yeh KH, Cheng AL (1997) High-dose 5-fluorouracil infusional therapy is associated with hyperammonaemia, lactic acidosis and encephalopathy. Br J Cancer 75:464–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakamura M, Kobashikawa K, Tamura J et al (2009) A case of 5-fluorouracil-induced hyperammmonia after chemotherapy for metastatic colon cancer. Nihon Shokakibyo Gakkai Zasshi 106:1744–1750. doi:10.11405/nisshoshi.106.1744

    PubMed  Google Scholar 

  5. Misumi N, Goto T, Miyoshi T et al (2013) Risk factors for hyperammonemia during mFOLFOX6 treatment. Gan To Kagaku Ryoho 40:483–487

    CAS  PubMed  Google Scholar 

  6. Iida T, Wagatsuma K, Tani M et al (2015) Four cases of 5-fluorouracil-related hyperammonemia in patients with large intestinal cancer and multiple liver metastases, including a case of hyperammonemia treated using hemodialysis. Nihon Shokakibyo Gakkai Zasshi 112:287–296. doi:10.11405/nisshoshi.112.287

    PubMed  Google Scholar 

  7. Horimatsu T, Miyamoto S, Morita S et al (2011) Pharmacokinetics of oxaliplatin in a hemodialytic patient treated with modified FOLFOX-6 plus bevacizumab therapy. Cancer Chemother Pharmacol 68:263–266. doi:10.1007/s00280-011-1633-9

    Article  CAS  PubMed  Google Scholar 

  8. Gamelin E, Delva R, Jacob J et al (2008) Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: Results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26:2099–2105. doi:10.1200/JCO.2007.13.3934

    Article  CAS  PubMed  Google Scholar 

  9. Kikuta S, Asakage T, Nakao K et al (2008) The aggravating factors of hyperammonemia related to 5-fluorouracil infusion–a report of two cases. Auris Nasus Larynx 35:295–299. doi:10.1016/j.anl.2007.04.012

    Article  PubMed  Google Scholar 

  10. Heggie GD, Sommadossi JP, Cross DS et al (1987) Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206

    CAS  PubMed  Google Scholar 

  11. Thiberville L, Compagnon P, Moore N et al (1994) Plasma 5-fluorouracil and alpha-fluoro-beta-alanin accumulation in lung cancer patients treated with continuous infusion of cisplatin and 5-fluorouracil. Cancer Chemother Pharmacol 35:64–70

    Article  CAS  PubMed  Google Scholar 

  12. Casale F, Canaparo R, Serpe L et al (2004) Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacol Res 50:173–179. doi:10.1016/j.phrs.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Lichtman SM, Wildiers H, Launay-Vacher V et al (2007) International Society of Geriatric Oncology (SIOG) recommendations for the adjustment of dosing in elderly cancer patients with renal insufficiency. Eur J Cancer 43:14–34. doi:10.1016/j.ejca.2006.11.004

    Article  PubMed  Google Scholar 

  14. Janus N, Thariat J, Boulanger H et al (2010) Proposal for dosage adjustment and timing of chemotherapy in hemodialyzed patients. Ann Oncol 21:1395–1403. doi:10.1093/annonc/mdp598

    Article  CAS  PubMed  Google Scholar 

  15. Bocci G, Danesi R, Allegrini G et al (2002) Severe 5-fluorouracil toxicity associated with a marked alteration of pharmacokinetics of 5-fluorouracil and its catabolite 5-fluoro-5,6-dihydrouracil: a case report. Eur J Clin Pharmacol 58:593–595. doi:10.1007/s00228-002-0534-6

    Article  CAS  PubMed  Google Scholar 

  16. van Kuilenburg AB, Haasjes J, Richel DJ et al (2000) Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 6:4705–4712

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to all the staffs involved in this case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Nishikawa.

Ethics declarations

Funding

This research was partially supported by a grant from Kyoto University Research Development Program.

Conflict of interest

YN, TF, TH, SM, TM, SN, AY, and KM have no conflicts of interest to disclose. MY receives research grants from Astellas, Chugai, Daiichi Sankyo, Fujiyakuhin, Kyowa Hakko Kirin, Mitsubishi Tanabe Pharma Corporation, MSD, Nippon Boehringer Ingelheim, and Torii and is on advisory boards of Astellas. MM receives research funding from Chugai, Mitsui Knowledge Industry, Taiho, Nissha Printing, Olympus and Theravalues and is on advisory boards of Kewpie and Eisai.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from the patient included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2017_3249_MOESM1_ESM.tif

Catabolism of 5-FU and hypothetic pathway of developing hyperammonemia during 5-FU-based chemotherapy. Abbreviations: FDHU dihydrofluorouracil, FUPA alpha-fluoro-beta-ureidopropionic acid, FBAL alpha-fluoro-beta-alanine, FMA fluoro mono acetate, DPD dihydropyrimidine dehydrogenase, and TCA cycle tricarboxylic acid cycle. (TIF 6077 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, Y., Funakoshi, T., Horimatsu, T. et al. Accumulation of alpha-fluoro-beta-alanine and fluoro mono acetate in a patient with 5-fluorouracil-associated hyperammonemia. Cancer Chemother Pharmacol 79, 629–633 (2017). https://doi.org/10.1007/s00280-017-3249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3249-1

Keywords

Navigation