Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 79, Issue 3, pp 479–487 | Cite as

Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer

  • Jing Zhang
  • Jinyu Liu
  • Xinyan Xu
  • Li Li
Original Article

Abstract

Purpose

To investigate how curcumin alters the extracellular vesicles’ (EVs) capability to ship drug resistance in ovarian cancer.

Methods

The EVs from cisplatin-resistant A2780cp cells with curcumin treatment (EVs-CU) or without curcumin treatment (EVs-N) were collected for lncRNA profiling. Curcumin’s effect on MEG3 promoter methylation and MEG3 expression were studied by MSP and qRT-PCR, respectively. The regulative effect of MEG3 on miR-214 expression and the functional role of EVs mediated transfer of miR-214 in cisplatin resistance were further investigated.

Results

Curcumin weakened the EVs-N’s capability to induce drug resistance and induced significant changes of lncRNAs in the EVs. MEG3 is one of the most upregulated lncRNAs. Curcumin led to demethylation in the promoter region of MEG3 and 5-AZA-dC treatment restored MEG3 expression in a dose dependent manner. There were at least two binding sites between MEG3 and miR-214. MEG3 restoration by curcumin significantly reduced miR-214 in cells and in EVs. Functionally, miR-214 inhibition weakened the EVs-N’s capability to enhance chemoresistance, while miR-214 overexpression increased the capability of EVs-CU in inducing chemoresistance.

Conclusion

Curcumin can restore MEG3 levels via demethylation. MEG3 upregulation can decrease EVs mediated transfer of miR-214 in ovarian cancer cells, thereby reducing drug resistance.

Keywords

Curcumin Cisplatin resistance Extracellular vesicles MEG3 MiR-214 Ovarian cancer 

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi: 10.3322/caac.21208 CrossRefPubMedGoogle Scholar
  2. 2.
    Suh DH, Kim JW, Kim K, Kang SB (2010) Major clinical research advances in gynecologic cancer in 2010. J Gynecol Oncol 21(4):209–218. doi: 10.3802/jgo.2010.21.4.209 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marchini S, Fruscio R, Clivio L, Beltrame L, Porcu L, Fuso Nerini I, Cavalieri D, Chiorino G, Cattoretti G, Mangioni C, Milani R, Torri V, Romualdi C, Zambelli A, Romano M, Signorelli M, di Giandomenico S, D’Incalci M (2013) Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Eur J Cancer 49(2):520–530. doi: 10.1016/j.ejca.2012.06.026 CrossRefPubMedGoogle Scholar
  4. 4.
    da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86(3):71. doi: 10.1095/biolreprod.111.093252 CrossRefPubMedGoogle Scholar
  5. 5.
    Takahashi K, Yan IK, Kogure T, Haga H, Patel T (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Biol 4:458–467. doi: 10.1016/j.fob.2014.04.007 CrossRefGoogle Scholar
  6. 6.
    Nawaz M, Fatima F, Nazarenko I, Ekstrom K, Murtaza I, Anees M, Sultan A, Neder L, Camussi G, Valadi H, Squire JA, Kislinger T (2016) Extracellular vesicles in ovarian cancer: applications to tumor biology, immunotherapy and biomarker discovery. Expert Rev Proteom 13(4):395–409. doi: 10.1586/14789450.2016.1165613 CrossRefGoogle Scholar
  7. 7.
    Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, Schmandt R, Lu KH, Mok SC (2016) Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 7:11150. doi: 10.1038/ncomms11150 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Terlikowska KM, Witkowska AM, Zujko ME, Dobrzycka B, Terlikowski SJ (2014) Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer. Int J Mol Sci 15(12):21703–21722. doi: 10.3390/ijms151221703 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G, Alessandro R (2015) Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget 6(26):21918–21933. doi: 10.18632/oncotarget.4204 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Abouzeid AH, Patel NR, Torchilin VP (2014) Polyethylene glycol-phosphatidylethanolamine (PEG-PE)/vitamin E micelles for co-delivery of paclitaxel and curcumin to overcome multi-drug resistance in ovarian cancer. Int J Pharm 464(1–2):178–184. doi: 10.1016/j.ijpharm.2014.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kogure T, Patel T (2013) Isolation of extracellular nanovesicle microRNA from liver cancer cells in culture. Methods Mol Biol 1024:11–18. doi: 10.1007/978-1-62703-453-1_2 CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi K, Yan IK, Wood J, Haga H, Patel T (2014) Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 12(10):1377–1387. doi: 10.1158/1541-7786.MCR-13-0636 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sheng X, Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y, Li J (2014) Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep 32(1):277–285. doi: 10.3892/or.2014.3208 PubMedGoogle Scholar
  14. 14.
    Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433. doi: 10.1158/0008-5472.CAN-07-2488 CrossRefPubMedGoogle Scholar
  15. 15.
    Xu CX, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA, Cheng JQ (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287(42):34970–34978. doi: 10.1074/jbc.M112.374611 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4(10):1595–1604. doi: 10.1158/1535-7163.MCT-05-0102 CrossRefPubMedGoogle Scholar
  17. 17.
    Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137(1):143–151. doi: 10.1016/j.ygyno.2014.12.042 CrossRefPubMedGoogle Scholar
  18. 18.
    Weiner-Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, Lindsay S, Gubbins L, Cannon A, Sharpe D, O’Sullivan J, Murphy M, Madden SF, Kell M, McCann A, Furlong F (2015) Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med 4(5):745–758. doi: 10.1002/cam4.409 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang FF, Zhu YF, Zhao QN, Yang DT, Dong YP, Jiang L, Xing WX, Li XY, Xing H, Shi M, Chen Y, Bruce IC, Jin J, Ma X (2014) Microvesicles mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780 human ovarian cancer cells, conferring paclitaxel-resistance. Eur J Pharmacol 738:83–90. doi: 10.1016/j.ejphar.2014.05.026 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z (2016) Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther 17 (1):104–113. doi: 10.1080/15384047.2015.1108496 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu LX, Deng W, Zhou XT, Chen RP, Xiang MQ, Guo YT, Pu ZJ, Li R, Wang GF, Wu LF (2016) The mechanism of adenosine-mediated activation of lncRNA MEG3 and its antitumor effects in human hepatoma cells. Int J Oncol 48(1):421–429. doi: 10.3892/ijo.2015.3248 PubMedGoogle Scholar
  22. 22.
    Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53. doi: 10.1530/JME-12-0008 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu YL, Yang HP, Zhou XD, Gong L, Tang CL, Wang HJ (2011) The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr Cancer Drug Targets 11(9):1098–1110CrossRefPubMedGoogle Scholar
  24. 24.
    Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomed Int J Phytother Phytopharmacol 22(10):961–967. doi: 10.1016/j.phymed.2015.05.071 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.The 1st Department of Gynecological SurgeryThe Affiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
  2. 2.The 1st Department of Gynecological CancerJilin Provincial Cancer HospitalChangchunChina

Personalised recommendations