Skip to main content

Advertisement

Log in

Midazolam as a phenotyping probe to predict sunitinib exposure in patients with cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Patients treated with sunitinib show substantial inter-patient variability in drug exposure (~30–40 %), which is largely unexplained. Since sunitinib is metabolized by cytochrome P450(CYP)3A4, variability in the activity of this enzyme may explain a considerable proportion of this inter-patient variability. Midazolam is widely used as a phenotyping probe to assess CYP3A4-activity. The objective of this study was to prospectively evaluate the relationship between midazolam and sunitinib exposure. Additionally, the correlation between sunitinib trough levels and exposure and the influence of sunitinib on midazolam exposure was determined.

Methods

Thirteen patients treated with sunitinib in a 4 weeks “on”—2 weeks “off” regimen received twice 7.5 mg midazolam; once with and once without sunitinib. Steady-state sunitinib, its active metabolite SU12662 and midazolam exposures were determined.

Results

A significant correlation between midazolam exposure (AUC0–7h) and steady-state sunitinib and sunitinib + SU12662 exposure (AUC0–24h) was found (p = 0.006 and p = 0.0018, respectively); midazolam exposure explained 51 and 41 % of the inter-patient variability in sunitinib and sunitinib + SU12622 exposure. Furthermore, C trough was highly correlated (r 2 = 0.94) with sunitinib AUC0–24h. Sunitinib decreased midazolam exposure with 24 % (p = 0.034).

Conclusion

Midazolam exposure is highly correlated with sunitinib exposure and explains a large proportion of the observed inter-patient variability in sunitinib pharmacokinetics. Consequently, midazolam could be used to identify patients that are at risk of under- or overtreatment, respectively, at the start of sunitinib therapy. Moreover, sunitinib and sunitinib + SU12662 trough levels are highly correlated with drug exposure and can thus be used in clinical practice to individualize sunitinib therapy. The decrease in midazolam exposure by sunitinib needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  2. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, Bello CL, Huang X, Baum CM, Casali PG (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    Article  CAS  PubMed  Google Scholar 

  3. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, Booth BP, Verbois SL, Morse DE, Liang CY, Chidambaram N, Jiang JX, Tang S, Mahjoob K, Justice R, Pazdur R (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 13:1367–1373

    Article  CAS  PubMed  Google Scholar 

  4. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen JS, Horsch D, Hammel P, Wiedenmann B, Van CE, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513

    Article  CAS  PubMed  Google Scholar 

  5. Adams VR, Leggas M (2007) Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin Ther 29:1338–1353

    Article  CAS  PubMed  Google Scholar 

  6. US Food and Drug Administration. Sutent® (sunitinib): Drug Approval Report. Available at http://www.accessdata.fda.gov/scripts/cder/drugsatfda/. Accessed 25th Mar 2013.2013

  7. Houk BE, Bello CL, Kang D, Amantea M (2009) A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res 15:2497–2506

    Article  CAS  PubMed  Google Scholar 

  8. Speed B, Bu HZ, Pool WF, Peng GW, Wu EY, Patyna S, Bello C, Kang P (2012) Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos 40:539–555

    Article  CAS  PubMed  Google Scholar 

  9. Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ (2010) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66:357–371

    Article  CAS  PubMed  Google Scholar 

  10. Puisset F, Dalenc F, Chatelut E, Cresteil T, Lochon I, Tisnes P, Roche H (2005) Dexamethasone as a probe for vinorelbine clearance. Br J Clin Pharmacol 60:45–53

    Article  CAS  PubMed  Google Scholar 

  11. de Graan AJ, Teunissen SF, de Vos FY, Loos WJ, van Schaik RH, de Jongh FE, de Vos AI, van Alphen RJ, van der Holt B, Verweij J, Seynaeve C, Beijnen JH, Mathijssen RH (2011) Dextromethorphan as a phenotyping test to predict endoxifen exposure in patients on tamoxifen treatment. J Clin Oncol 29:3240–3246

    Article  PubMed  Google Scholar 

  12. Goh BC, Lee SC, Wang LZ, Fan L, Guo JY, Lamba J, Schuetz E, Lim R, Lim HL, Ong AB, Lee HS (2002) Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 20:3683–3690

    Article  CAS  PubMed  Google Scholar 

  13. Mathijssen RH, de Jong FA, van Schaik RH, Lepper ER, Friberg LE, Rietveld T, de Bruijn P, Graveland WJ, Figg WD, Verweij J, Sparreboom A (2004) Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst 96:1585–1592

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Karlsson MO, Brahmer J, Spitz A, Zhao M, Hidalgo M, Baker SD (2006) CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst 98:1714–1723

    Article  CAS  PubMed  Google Scholar 

  15. Swaisland HC, Cantarini MV, Fuhr R, Holt A (2006) Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet 45:633–644

    Article  CAS  PubMed  Google Scholar 

  16. Opdam FL, Dezentje VO, den HJ, Modak AS, Vree R, Batman E, Smorenburg CH, Nortier JW, Gelderblom H, Guchelaar HJ (2013) The use of the 13C-dextromethorphan breath test for phenotyping CYP2D6 in breast cancer patients using tamoxifen: association with CYP2D6 genotype and serum endoxifen levels. Cancer Chemother Pharmacol 71(3):593–601

  17. Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM, Wilcken N, Clarke CL, Mann GJ, Collins M, Delforce SE, Lynch K, Schran H (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82:33–40

    Article  CAS  PubMed  Google Scholar 

  18. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH (2000) The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 6:1255–1258

    CAS  PubMed  Google Scholar 

  19. Slaviero KA, Clarke SJ, McLachlan AJ, Blair EY, Rivory LP (2004) Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br J Clin Pharmacol 57:44–53

    Article  CAS  PubMed  Google Scholar 

  20. Opdam FL, Gelderblom H, Guchelaar H-J (2012) Phenotyping drug disposition in oncology. Cancer Treat Rev 38:715–725

    Article  CAS  PubMed  Google Scholar 

  21. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706

    Article  PubMed  Google Scholar 

  22. van Erp NP, de WD, Guchelaar HJ, Gelderblom H, Hessing TJ, Hartigh JD (2013) A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr.B Analyt. Technol Biomed Life Sci 937C:33–43

    Article  Google Scholar 

  23. van Erp NP, Guchelaar HJ, Ploeger BA, Romijn JA, Hartigh J, Gelderblom H (2011) Mitotane has a strong and a durable inducing effect on CYP3A4 activity. Eur J Endocrinol 164:621–626

    Article  PubMed  Google Scholar 

  24. Takeshita A, Igarashi-Migitaka J, Koibuchi N, Takeuchi Y (2013) Mitotane induces CYP3A4 expression via activation of the steroid and xenobiotic receptor. J Endocrinol 216:297–305

    Article  CAS  PubMed  Google Scholar 

  25. Chortis V, Taylor AE, Schneider P, Tomlinson JW, Hughes BA, O’Neil DM, Libe R, Allolio B, Bertagna X, Bertherat J, Beuschlein F, Fassnacht M, Karavitaki N, Mannelli M, Mantero F, Opocher G, Porfiri E, Quinkler M, Sherlock M, Terzolo M, Nightingale P, Shackleton CH, Stewart PM, Hahner S, Arlt W (2013) Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5alpha-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J Clin Endocrinol Metab 98:161–171

    Article  CAS  PubMed  Google Scholar 

  26. Kroiss M, Quinkler M, Lutz WK, Allolio B, Fassnacht M (2011) Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma. Clin Endocrinol (Oxf) 75:585–591

    Article  CAS  Google Scholar 

  27. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, Bello C, Deprimo S, Brega N, Massimini G, Armand JP, Scigalla P, Raymond E (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    Article  CAS  PubMed  Google Scholar 

  28. T. Mizuno, M. Fukudo, T. Terada, T. Kamba, E. Nakamura, O. Ogawa, KI. Inui, T. Katsura (2012) Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 27(6):631–639

    Article  CAS  PubMed  Google Scholar 

  29. Mizuno T, Terada T, Kamba T, Fukudo M, Katsura T, Nakamura E, Ogawa O, Inui K (2010) ABCG2 421C > A polymorphism and high exposure of sunitinib in a patient with renal cell carcinoma. Ann Oncol 21:1382–1383

    Article  CAS  PubMed  Google Scholar 

  30. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671

    PubMed  Google Scholar 

  31. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    CAS  PubMed  Google Scholar 

  32. Kozloff M, Chuang E, Starr A, Gowland PA, Cataruozolo PE, Collier M, Verkh L, Huang X, Kern KA, Miller K (2010) An exploratory study of sunitinib plus paclitaxel as first-line treatment for patients with advanced breast cancer. Ann Oncol 21:1436–1441

    Article  CAS  PubMed  Google Scholar 

  33. Robert F, Sandler A, Schiller JH, Liu G, Harper K, Verkh L, Huang X, Ilagan J, Tye L, Chao R, Traynor AM (2010) Sunitinib in combination with docetaxel in patients with advanced solid tumors: a phase I dose-escalation study. Cancer Chemother Pharmacol 66:669–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. de Jonge MJ, Dumez H, Kitzen JJ, Beuselinck B, Verweij J, Courtney R, Battista A, Brega N, Schoffski P (2011) Phase I safety and pharmacokinetic study of SU-014813 in combination with docetaxel in patients with advanced solid tumours. Eur J Cancer 47:1328–1335

    Article  PubMed  Google Scholar 

  35. Boven E, Massard C, Armand JP, Tillier C, Hartog V, Brega NM, Countouriotis AM, Ruiz-Garcia A, Soria JC (2010) A phase I, dose-finding study of sunitinib in combination with irinotecan in patients with advanced solid tumours. Br J Cancer 103:993–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sugiyama M, Fujita K, Murayama N, Akiyama Y, Yamazaki H, Sasaki Y (2011) Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1′-hydroxylation. Drug Metab Dispos 39:757–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ron Wolterbeek for his statistical support. This work was supported in part by the American Lebanese Syrian Associated Charities (ALSAC).

Conflict of interest

The authors have no disclosures to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. van Erp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wit, D., Gelderblom, H., Sparreboom, A. et al. Midazolam as a phenotyping probe to predict sunitinib exposure in patients with cancer. Cancer Chemother Pharmacol 73, 87–96 (2014). https://doi.org/10.1007/s00280-013-2322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2322-7

Keywords

Navigation