Skip to main content

Advertisement

Log in

Enhanced 5-fluorouracil cytotoxicity in high cyclooxygenase-2 expressing colorectal cancer cells and xenografts induced by non-steroidal anti-inflammatory drugs via downregulation of dihydropyrimidine dehydrogenase

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To prove that 5-FU cytotoxicity could be increased by combination with low-dose non-steroidal anti-inflammatory drugs (NSAIDs) (indomethacin or NS-398) in high cyclooxygenase-2- (COX-2) expressing cells and xenografts through the modulation of dihydropyrimidine dehydrogenase (DPD) mRNA expression and/or enzyme activity.

Methods

HT-29 cells were grown on collagen IV coated plates (HT-29-C). The antiproliferative effect of 5-fluorouracil (5-FU) ± NSAIDs was examined on non-COX-2 expressing HT-29 and COX-2-expressing HT-29-C cells by sulphorhodamine B assay. The COX-2 and DPD expressions were visualized by immunofluorescent staining, and prostaglandin E2 levels were measured by ELISA kit. The HT-29 xenograft was established in SCID mice and treated with 5-FU ± NSAIDs for 5 days. The tumor volume, enzyme activity, and DPD mRNA expression were investigated by caliper, radioenzymatic method, and real-time RT-PCR, respectively. The drug interaction was calculated for both combinations (5-FU + indomethacin and 5-FU + NS-398).

Results

Collagen IV up-regulated significantly the COX-2 and DPD mRNA, and protein expressions, and also their enzyme activities in HT-29 cells. NSAIDs enhanced in a synergistic manner the cytotoxic effect of 5-FU treatment both in vitro and in vivo. Downregulation of DPD was observed after 5-FU monotherapy, but the combined effect of NSAIDs and 5-FU on DPD mRNA expression, and enzyme activity was superior to the effect of 5-FU alone.

Conclusions

Since 5-FU + NSAID treatment can alter the DPD enzyme activity resulting in an enhanced cytotoxic effect, further studies in clinical practice are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schnackerz KD, Dobritzsch D, Lindqvist Y, Cook PF (2004) Dihydropyrimidine dehydrogenase: a flavoprotein with four iron-sulfur clusters. Biochim Biophys Acta 1701:61–74

    CAS  PubMed  Google Scholar 

  2. Hoff PM (2000) The tegafur-based dihydropyrimidine dehydrogenase inhibitory fluoropyrimidines, UFT/leucovorin (ORZELTM) and S-1: a review of their clinical development and therapeutic potential. Invest New Drugs 18:331–342

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed FY, Johnston SJ, Cassidy J et al (1999) Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumors. J Clin Oncol 17:2439–2445

    CAS  PubMed  Google Scholar 

  4. Kralovánszky J, Katona C, Jeney A et al (1999) 5-Ethyl-2′-deoxyuridine, a modulator of both antitumour action and pharmacokinetics of 5-fluorouracil. J Cancer Res Clin Oncol 125:675–684

    Article  PubMed  Google Scholar 

  5. de Groot DJ, de Vries EG, Groen HJ, de Jong S (2007) Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Crit Rev Oncol Hematol 61:52–69

    Article  PubMed  Google Scholar 

  6. Bennett A, Gaffen JD, Melhuish PB, Stamford IF (1987) Studies on the mechanism by which indomethacin increases the anticancer effect of methotrexate. Br J Pharmacol 91:229–235

    CAS  PubMed  Google Scholar 

  7. Totzke G, Schulze-Osthoff K, Jänicke U (2003) Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced appoptosis independently of COX-2 inhibition. Oncogene 22:8021–8030

    Article  PubMed  Google Scholar 

  8. Réti A, Barna G, Pap E, Adleff V, L Komlósi V, Jeney A, Kralovánszky J, Budai B (2008) Enhancement of 5-fluorouracil efficacy on high COX-2 expressing HCA-7 cells by low-dose indomethacin and NS-398 but not on low COX-2 expressing HT-29 cells. Pathol Oncol Res. doi:10.1007/s12253-008-9126-9

  9. Réti A, Pap É, Zalatnai A, Jeney A, Kralovanszky J, Budai B (2009) Co-inhibition of cyclooxygenase-2 and dihydropyrimidine dehydrogenase by non-steroidal anti-inflammatory drugs in tumor cells and xenografts. Anticancer Res 29:3095–3102

    PubMed  Google Scholar 

  10. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  11. Guichard S, Cussac D, Hennebelle I, Bugat R, Canal P (1997) Sequence-dependent activity of the irinotecan-5FU combination in human colon-cancer model HT-29 in vitro and in vivo. Int J Cancer 73:729–734

    Article  CAS  PubMed  Google Scholar 

  12. Eli Y, Przedecki F, Levin G, Kariv N, Raz A (2001) Comparative effects of indomethacin on cell proliferation and cell cycle progression in tumor cells grown in vitro and in vivo. Biochem Pharmacol 61:565–571

    Article  CAS  PubMed  Google Scholar 

  13. Matsuo Muneaki, Yoshida Nobuyuki, Zaitsu Masahumi, Ishii Kiyohisa, Hamasaki Yuhei (2004) Inhibition of human glioma cell growth by a PHS-2 inhibitor, NS398, and a prostaglandin E receptor subtype EP1-selective antagonist, SC51089. J Neurooncol 66:285–292

    Article  PubMed  Google Scholar 

  14. Kern DH, Morgan CR, Hildebrand-Zanki SU (1988) In vitro pharmacodynamics of 1-beta-d-arabinofuranosylcytosine: synergy of antitumor activity with cis-diamminedichloro-platinum(II). Cancer Res 48:117–121

    CAS  PubMed  Google Scholar 

  15. Sweeney CJ (2003) Why cyclooxygenase-2 inhibition plus chemotherapy? Am J Clin Oncol 26:S122–S125

    PubMed  Google Scholar 

  16. Zaric J, Rüegg C (2005) Integrin-mediated adhesion and soluble ligand binding stabilize COX-2 protein levels in endothelial cells by inducing expression and preventing degradation. J Biol Chem 280:1077–1085

    Article  CAS  PubMed  Google Scholar 

  17. Broom OJ, Massoumi R, Sjölander A (2006) Alpha2beta1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells. J Cell Physiol 209:950–958

    Article  CAS  PubMed  Google Scholar 

  18. Takahra T, Smart DE, Oakley F, Mann DA (2004) Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1. Int J Biochem Cell Biol 36:353–363

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Li L, Fourie J, Davie JR, Guarcello V, Diasio RB (2006) The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta 1759:247–256

    CAS  PubMed  Google Scholar 

  20. Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68:317–329

    CAS  PubMed  Google Scholar 

  21. Ogino M, Hanazono M (1999) Indomethacin preferentially augments 5-fluorouracil cytotoxicity in Colon 26 tumors by increasing the intracellular inflow of 5-fluorouracil. Int J Clin Oncol 4:22–25

    Article  Google Scholar 

  22. Tachimori A, Yamada N, Amano R, Ohira M, Hirakawa K (2008) Combination therapy of S-1 with selective cyclooxygenase-2 inhibitor for liver metastasis of colorectal carcinoma. Anticancer Res 28:629–638

    CAS  PubMed  Google Scholar 

  23. Leonetti C, Scarsella M, Zupi G et al (2006) Efficacy of a nitric oxide-releasing nonsteroidal anti-inflammatory drug and cytotoxic drugs in human colon cancer cell lines in vitro and xenografts. Mol Cancer Ther 5:919–926

    Article  CAS  PubMed  Google Scholar 

  24. Ogino M, Minoura S (2001) Indomethacin increases the cytotoxicity of cis-platinum and 5-fluorouracil in the human uterine cervical cancer cell lines SKG-2 and HKUS by increasing the intracellular uptake of the agents. Int J Clin Oncol 6:84–89

    Article  CAS  PubMed  Google Scholar 

  25. Yao M, Zhou W, Sangha S, Albert A, Chang AJ, Liu TC, Wolfe MM (2005) Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res 11:1618–1628

    Article  CAS  PubMed  Google Scholar 

  26. Eichele K, Ramer R, Hinz B (2008) Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells. Oncogene 27:3032–3044

    Article  CAS  PubMed  Google Scholar 

  27. Shestopal SA, Johnson MR, Diasio RB (2000) Molecular cloning and characterization of the human dihydropyrimidine dehydrogenase promoter. Biochim Biophys Acta 1494:162–169

    CAS  PubMed  Google Scholar 

  28. Mizutani Y, Kamoi K, Ukimura O, Kawauchi A, Miki T (2002) Synergistic cytotoxicity and apoptosis of JTE-522, a selective cyclooxygenase-2 inhibitor, and 5-fluorouracil against bladder cancer. J Urol 168:2650–2654

    Article  CAS  PubMed  Google Scholar 

  29. Tang XY, Zhu YQ, Tao WH, Wei B, Lin XL (2007) Synergistic effect of triptolide combined with 5-fluorouracil on colon carcinoma. Postgrad Med J 83:338–343

    Article  CAS  PubMed  Google Scholar 

  30. Adeyemo D, Imtiaz F, Toffa S, Lowdell M, Wickremasinghe RG, Winslet M (2001) Antioxidants enhance the susceptibility of colon carcinoma cells to 5-fluorouracil by augmenting the induction of the bax protein. Cancer Lett 164:77–84

    Article  CAS  PubMed  Google Scholar 

  31. Mizutani Y, Nakanishi H, Yoshida O, Fukushima M, Bonavida B, Miki T (2002) Potentiation of the sensitivity of renal cell carcinoma cells to TRAIL-mediated apoptosis by subtoxic concentrations of 5-fluorouracil. Eur J Cancer 38:167–176

    Article  CAS  PubMed  Google Scholar 

  32. Dou J, Iwashita Y, Sasaki A, Kai S, Hirano S, Ohta M, Kitano S (2005) Consensus interferon enhances the anti-proliferative effect of 5-fluorouracil on human hepatoma cells via downregulation of dihydropyrimidine dehydrogenase expression. Liver Int 25:148–152

    Article  CAS  PubMed  Google Scholar 

  33. Zhao L, Chen Z, Wang J et al (2009) Synergistic effect of 5-fluorouracil and flavonoid oroxylin A on HepG2 human hepatocellular carcinoma and on H22 transplanted mice. Cancer Chemother Pharmacol. doi:10.1007/s00280-009-1053-2

  34. Takechi T, Okabe H, Fujioka A, Murakami Y, Fukushima M (1998) Relationship between protein levels and gene expression of dihydropyrimidine dehydrogenase in human tumor cells during growth in culture and in nude mice. Jpn J Cancer Res 89:1144–1153

    CAS  PubMed  Google Scholar 

  35. Johnson MR, Wang K, Smith JB, Heslin MJ, Diasio RB (2000) Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal Biochem 278:175–184

    Article  CAS  PubMed  Google Scholar 

  36. Miyamoto S, Ochiai A, Boku N, Ohtsu A, Tahara M, Yoshida S, Okabe H, Takechi T, Fukushima M (2001) Discrepancies between the gene expression, protein expression, and enzymatic activity of thymidylate synthase and dihydropyrimidine dehydrogenase in human gastrointestinal cancers and adjacent normal mucosa. Int J Oncol 18:705–713

    CAS  PubMed  Google Scholar 

  37. Nishiyama M, Yamamoto W, Park JS et al (1999) Low-dose cisplatin and 5-fluorouracil in combination can repress increased gene expression of cellular resistance determinants to themselves. Clin Cancer Res 5:2620–2628

    CAS  PubMed  Google Scholar 

  38. Sakurai Y, Uraguchi T, Imazu H, Hasegawa S, Matsubara T, Ochiai M, Funabiki T (2004) Changes in thymidylate synthase and its inhibition rate and changes in dihydropyrimidine dehydrogenase after the administration of 5-fluorouracil with cisplatin to nude mice with gastric cancer xenograft SC-1-NU. Gastric Cancer 7:110–116

    Article  CAS  PubMed  Google Scholar 

  39. Sakurai Y, Yoshida I, Kamoshida S, Inaba K, Isogaki J, Komori Y, Uyama I, Tsutsumi Y (2008) Changes of gene expression of thymidine phosphorylase, thymidylate synthase, dihydropyrimidine dehydrogenase after the administration of 5′-deoxy-5-fluorouridine, paclitaxel and its combination in human gastric cancer xenografts. Anticancer Res 28:1593–1602

    CAS  PubMed  Google Scholar 

  40. Ma T, Zhu ZG, Ji YB, Zhang Y, Yu YY, Liu BY, Yin HR, Lin YZ (2004) Correlation of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase with sensitivity of gastrointestinal cancer cells to 5-fluorouracil and 5-fluoro-2′-deoxyuridine. World J Gastroenterol 10:172–176

    CAS  PubMed  Google Scholar 

  41. Kobunai T, Ooyama A, Sasaki S, Wierzba K, Takechi T, Fukushima M, Watanabe T, Nagawa H (2007) Changes to the dihydropyrimidine dehydrogenase gene copy number influence the susceptibility of cancers to 5-FU-based drugs: data mining of the NCI-DTP data sets and validation with human tumour xenografts. Eur J Cancer 43:791–798

    Article  CAS  PubMed  Google Scholar 

  42. Kralovánszky J, Adleff V, Hitre E, Pap E, Réti A, Komlósi V, Budai B (2007) Pharmacogenetic studies on the prediction of efficacy and toxicity of fluoropyrimidine-based adjuvant therapy in colorectal cancer. Magy Onkol 51:113–125

    PubMed  Google Scholar 

  43. Yamada H, Iinuma H, Watanabe T (2008) Prognostic value of 5-fluorouracil metabolic enzyme genes in Dukes’ stage B and C colorectal cancer patients treated with oral 5-fluorouracil-based adjuvant chemotherapy. Oncol Rep 19:729–735

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The SCID mice were generously gifted by Dr. D. Gaál. The excellent technical assistance of Cs. Polényi Makácsné, A. Nagy, J. Kútvölgyi, A. Éber Mousáné, A. Sztodola and A. M. Borza are greatly appreciated. This study was supported by the Jedlik Ányos Grant (NKFP1-00024/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Kralovánszky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réti, A., Pap, É., Adleff, V. et al. Enhanced 5-fluorouracil cytotoxicity in high cyclooxygenase-2 expressing colorectal cancer cells and xenografts induced by non-steroidal anti-inflammatory drugs via downregulation of dihydropyrimidine dehydrogenase. Cancer Chemother Pharmacol 66, 219–227 (2010). https://doi.org/10.1007/s00280-009-1149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1149-8

Keywords

Navigation