UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells


Increased expression of fetal hemoglobin (HbF) improves the clinical severity of β-thalassemia patients. EHMT1/2 histone methyltransferases are epigenetic modifying enzymes that are responsible for catalyzing addition of the repressive histone mark H3K9me2 at silenced genes, including the γ-globin genes. UNC0638, a chemical inhibitor of EHMT1/2, has been shown to induce HbF expression in human erythroid progenitor cell cultures. Here, we report the HbF-inducing activity of UNC0638 in erythroid progenitor cells from β-thalassemia/HbE patients. UNC0638 treatment led to significant increases in γ-globin mRNA, HbF expression, and HbF-containing cells in the absence of significant cytotoxicity. Moreover, UNC0638 showed additive effects on HbF induction in combination with the immunomodulatory drug pomalidomide and the DNMT1 inhibitor decitabine. These studies provide a scientific proof of concept that a small molecule targeting EHMT1/2 epigenetic enzymes, used alone or in combination with pomalidomide or decitabine, is a potential therapeutic approach for HbF induction. Further development of structural analogs of UNC0638 with similar biological effects but improved pharmacokinetic properties may lead to promising therapies and possible clinical application for the treatment of β-thalassemia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Weatherall DJ (2010) The inherited diseases of hemoglobin are an emerging global health burden. Blood 115(22):4331–4336. https://doi.org/10.1182/blood-2010-01-251348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Galanello R, Origa R (2010) Beta-thalassemia. Orphanet J Rare Dis 5:11. https://doi.org/10.1186/1750-1172-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353(11):1135–1146. https://doi.org/10.1056/NEJMra050436

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Olivieri NF, Pakbaz Z, Vichinsky E (2011) Hb E/beta-thalassaemia: a common & clinically diverse disorder. Indian J Med Res 134:522–531

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Fucharoen S, Weatherall DJ (2012) The hemoglobin E thalassemias. Cold Spring Harb Perspect Med 2(8). https://doi.org/10.1101/cshperspect.a011734

  6. 6.

    Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E, Semeraro M, Moshous D, Lefrere F, Puy H, Bourget P, Magnani A, Caccavelli L, Diana JS, Suarez F, Monpoux F, Brousse V, Poirot C, Brouzes C, Meritet JF, Pondarre C, Beuzard Y, Chretien S, Lefebvre T, Teachey DT, Anurathapan U, Ho PJ, von Kalle C, Kletzel M, Vichinsky E, Soni S, Veres G, Negre O, Ross RW, Davidson D, Petrusich A, Sandler L, Asmal M, Hermine O, De Montalembert M, Hacein-Bey-Abina S, Blanche S, Leboulch P, Cavazzana M (2018) Gene therapy in patients with transfusion-dependent beta-Thalassemia. N Engl J Med 378(16):1479–1493. https://doi.org/10.1056/NEJMoa1705342

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Winichagoon P, Fucharoen S, Chen P, Wasi P (2000) Genetic factors affecting clinical severity in beta-thalassemia syndromes. J Pediatr Hematol Oncol 22(6):573–580. https://doi.org/10.1097/00043426-200011000-00026

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Sripichai O, Munkongdee T, Kumkhaek C, Svasti S, Winichagoon P, Fucharoen S (2008) Coinheritance of the different copy numbers of alpha-globin gene modifies severity of beta-thalassemia/Hb E disease. Ann Hematol 87(5):375–379. https://doi.org/10.1007/s00277-007-0407-2

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nuinoon M, Makarasara W, Mushiroda T, Setianingsih I, Wahidiyat PA, Sripichai O, Kumasaka N, Takahashi A, Svasti S, Munkongdee T, Mahasirimongkol S, Peerapittayamongkol C, Viprakasit V, Kamatani N, Winichagoon P, Kubo M, Nakamura Y, Fucharoen S (2010) A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E. Hum Genet 127(3):303–314. https://doi.org/10.1007/s00439-009-0770-2

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med 332(20):1317–1322. https://doi.org/10.1056/NEJM199505183322001

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Fucharoen S, Siritanaratkul N, Winichagoon P, Chowthaworn J, Siriboon W, Muangsup W, Chaicharoen S, Poolsup N, Chindavijak B, Pootrakul P, Piankijagum A, Schechter AN, Rodgers GP (1996) Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in beta-thalassemia/hemoglobin E disease. Blood 87(3):887–892

    CAS  Article  Google Scholar 

  12. 12.

    Loukopoulos D, Voskaridou E, Stamoulakatou A, Papassotiriou Y, Kalotychou V, Loutradi A, Cozma G, Tsiarta H, Pavlides N (1998) Hydroxyurea therapy in thalassemia. Ann N Y Acad Sci 850:120–128. https://doi.org/10.1111/j.1749-6632.1998.tb10469.x

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Fathallah H, Sutton M, Atweh GF (2005) Pharmacological induction of fetal hemoglobin: why haven't we been more successful in thalassemia? Ann N Y Acad Sci 1054:228–237. https://doi.org/10.1196/annals.1345.029

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Musallam KM, Taher AT, Cappellini MD, Sankaran VG (2013) Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood 121(12):2199–2212; quiz 2372. https://doi.org/10.1182/blood-2012-10-408021

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Platt OS (2008) Hydroxyurea for the treatment of sickle cell anemia. N Engl J Med 358(13):1362–1369. https://doi.org/10.1056/NEJMct0708272

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, Gordeuk VR, Viswanathan K, Sarnaik S, Osunkwo I, Guillaume E, Sadanandan S, Sieger L, Lasky JL, Panosyan EH, Blake OA, New TN, Bellevue R, Tran LT, Razon RL, Stark CW, Neumayr LD, Vichinsky EP, Investigators of the Phase 3 Trial of l-Glutamine in Sickle Cell D (2018) A phase 3 trial of l-glutamine in sickle cell disease. N Engl J Med 379(3):226–235. https://doi.org/10.1056/NEJMoa1715971

    CAS  Article  Google Scholar 

  17. 17.

    Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O (2011) Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 31(16):3298–3311. https://doi.org/10.1128/MCB.05310-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao H, Trowbridge JJ, Mandel G, Orkin SH (2013) Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci U S A 110(16):6518–6523. https://doi.org/10.1073/pnas.1303976110

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lavelle D, Engel JD, Saunthararajah Y (2018) Fetal hemoglobin induction by epigenetic drugs. Semin Hematol 55(2):60–67. https://doi.org/10.1053/j.seminhematol.2018.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Olivieri NF, Saunthararajah Y, Thayalasuthan V, Kwiatkowski J, Ware RE, Kuypers FA, Kim HY, Trachtenberg FL, Vichinsky EP, Thalassemia Clinical Research N (2011) A pilot study of subcutaneous decitabine in beta-thalassemia intermedia. Blood 118(10):2708–2711. https://doi.org/10.1182/blood-2011-03-341909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fucharoen S, Inati A, Siritanaratku N, Thein SL, Wargin WC, Koussa S, Taher A, Chaneim N, Boosalis M, Berenson R, Perrine SP (2013) A randomized phase I/II trial of HQK-1001, an oral fetal globin gene inducer, in beta-thalassaemia intermedia and HbE/beta-thalassaemia. Br J Haematol 161(4):587–593. https://doi.org/10.1111/bjh.12304

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shi L, Cui S, Engel JD, Tanabe O (2013) Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 19(3):291–294. https://doi.org/10.1038/nm.3101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cui S, Lim KC, Shi L, Lee M, Jearawiriyapaisarn N, Myers G, Campbell A, Harro D, Iwase S, Trievel RC, Rivers A, DeSimone J, Lavelle D, Saunthararajah Y, Engel JD (2015) The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood 126(3):386–396. https://doi.org/10.1182/blood-2015-02-626259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Krivega I, Byrnes C, de Vasconcellos JF, Lee YT, Kaushal M, Dean A, Miller JL (2015) Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/gamma-globin looping. Blood 126(5):665–672. https://doi.org/10.1182/blood-2015-02-629972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, Holson EB, Bernstein BE, Orkin SH, Bauer DE, Ebert BL (2015) EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 126(16):1930–1939. https://doi.org/10.1182/blood-2015-06-649087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Moutouh-de Parseval LA, Verhelle D, Glezer E, Jensen-Pergakes K, Ferguson GD, Corral LG, Morris CL, Muller G, Brady H, Chan K (2008) Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J Clin Invest 118(1):248–258. https://doi.org/10.1172/JCI32322

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Dulmovits BM, Appiah-Kubi AO, Papoin J, Hale J, He M, Al-Abed Y, Didier S, Gould M, Husain-Krautter S, Singh SA, Chan KW, Vlachos A, Allen SL, Taylor N, Marambaud P, An X, Gallagher PG, Mohandas N, Lipton JM, Liu JM, Blanc L (2016) Pomalidomide reverses gamma-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood 127(11):1481–1492. https://doi.org/10.1182/blood-2015-09-667923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Khamphikham P, Nualkaew T, Pongpaksupasin P, Kaewsakulthong W, Songdej D, Paiboonsukwong K, Engel JD, Hongeng S, Fucharoen S, Sripichai O, Jearawiriyapaisarn N (2020) High-level induction of fetal haemoglobin by pomalidomide in beta-thalassaemia/HbE erythroid progenitor cells. Br J Haematol. https://doi.org/10.1111/bjh.16670

  29. 29.

    Sripichai O, Kiefer CM, Bhanu NV, Tanno T, Noh SJ, Goh SH, Russell JE, Rognerud CL, Ou CN, Oneal PA, Meier ER, Gantt NM, Byrnes C, Lee YT, Dean A, Miller JL (2009) Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood 114(11):2299–2306. https://doi.org/10.1182/blood-2009-05-219386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25(8):781–788. https://doi.org/10.1101/gad.2027411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chen X, Skutt-Kakaria K, Davison J, Ou YL, Choi E, Malik P, Loeb K, Wood B, Georges G, Torok-Storb B, Paddison PJ (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev 26(22):2499–2511. https://doi.org/10.1101/gad.200329.112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 105(5):1620–1625. https://doi.org/10.1073/pnas.0711566105

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Musallam KM, Sankaran VG, Cappellini MD, Duca L, Nathan DG, Taher AT (2012) Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia. Blood 119(2):364–367. https://doi.org/10.1182/blood-2011-09-382408

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Meiler SE, Wade M, Kutlar F, Yerigenahally SD, Xue Y, Moutouh-de Parseval LA, Corral LG, Swerdlow PS, Kutlar A (2011) Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood 118(4):1109–1112. https://doi.org/10.1182/blood-2010-11-319137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    DeSimone J, Koshy M, Dorn L, Lavelle D, Bressler L, Molokie R, Talischy N (2002) Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood 99(11):3905–3908. https://doi.org/10.1182/blood.v99.11.3905

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, Gavazova S, Chen YH, Hoffman R, DeSimone J (2003) Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102(12):3865–3870. https://doi.org/10.1182/blood-2003-05-1738

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Noguchi CT, Rodgers GP, Serjeant G, Schechter AN (1988) Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N Engl J Med 318(2):96–99. https://doi.org/10.1056/NEJM198801143180207

    CAS  Article  Google Scholar 

  38. 38.

    Charache S, Dover GJ, Moore RD, Eckert S, Ballas SK, Koshy M, Milner PF, Orringer EP, Phillips G Jr, Platt OS et al (1992) Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood 79(10):2555–2565

    CAS  Article  Google Scholar 

  39. 39.

    Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, Sinopoulou K, Balassopoulou A, Loukopoulos D, Terpos E (2010) The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 115(12):2354–2363. https://doi.org/10.1182/blood-2009-05-221333

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A (2014) Fetal hemoglobin in sickle cell anemia: a glass half full? Blood 123(4):481–485. https://doi.org/10.1182/blood-2013-09-528067

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang XP, Allali-Hassani A, Janzen WP, Roth BL, Frye SV, Arrowsmith CH, Brown PJ, Vedadi M, Jin J (2013) Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J Med Chem 56(21):8931–8942. https://doi.org/10.1021/jm401480r

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank the patients and their families for their contributions to this study, and Thongperm Munkongdee, Nattrika Buasuwan, and Nurmeeha Hinna for their assistance with the DNA diagnosis for thalassemia and hemoglobin analysis. The technical assistance of Greggory Myers and the editorial assistance of Kim-Chew Lim (all at the University of Michigan) is greatly appreciated.


This work was supported by grants from Mahidol University; the Thailand Research Fund (MRG5680092); the Office of the Higher Education Commission; and the Program Management Unit for Human resources & Institutional Development, Research and Innovation to N.J. P.P was supported by the Siriraj Graduate Scholarship.

Author information




Contribution: T.N., P.K., and N.J. designed the research; T.N., P.K., P.P., and W.K. performed the experiments; T.N., P.K., and N.J. analyzed the data; D.S., K.P., S.H., and S.F. provided the samples and resources; T.N., J.D.E., and N.J. wrote the manuscript; O.S., J.D.E., S.H., S.F., and N.J. conceptualized the idea and supervised the project; and all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Natee Jearawiriyapaisarn.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

The study was approved by Institutional Review Boards of Mahidol University and was conducted in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Written informed consent was obtained from all participants before being included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 2445 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nualkaew, T., Khamphikham, P., Pongpaksupasin, P. et al. UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells. Ann Hematol 99, 2027–2036 (2020). https://doi.org/10.1007/s00277-020-04136-w

Download citation


  • Fetal hemoglobin induction
  • β-Thalassemia/HbE
  • UNC0638
  • Pomalidomide
  • Decitabine