Dynamics of hematopoiesis is disrupted by impaired hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis


Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory disorder. We found recently that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated mice (SAMP1/TA-1) but not in senescence-resistant control mice (SAMR1). In this study, we analyzed the dynamics of hematopoiesis in this mouse model of HLH. When treated repeatedly with LPS, the numbers of myeloid progenitor cells (CFU-GM) and B-lymphoid progenitor cells (CFU-preB) in the bone marrow (BM) rapidly decreased after each treatment in both strains. The number of CFU-GM in SAMP1/TA-1 and SAMR1, and of CFU-preB in SAMR1, returned to pretreatment levels by 7 days after each treatment. However, the recovery in the number of CFU-preB in SAMP1/TA-1 was limited. In both strains, the BM expression of genes encoding positive regulators of myelopoiesis (granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6), and negative regulators of B lymphopoiesis (tumor necrosis factor (TNF)-α) was increased. The expression of genes encoding positive regulators of B lymphopoiesis (stromal-cell derived factor (SDF)-1, IL-7, and stem cell factor (SCF)) was persistently decreased in SAMP1/TA-1 but not in SAMR1. Expression of the gene encoding p16INK4a and the proportion of β-galactosidase-positive cells were increased in cultured stromal cells obtained from LPS-treated SAMP1/TA-1 but not in those from LPS-treated SAMR1. LPS treatment induced qualitative changes in stromal cells, which comprise the microenvironment supporting appropriate hematopoiesis, in SAMP1/TA-1; these stromal cell changes are inferred to disrupt the dynamics of hematopoiesis. Thus, hematopoietic tissue is one of the organs that suffer life-threatening damage in HLH.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G, for the Histiocyte Society (2007) HLH-2004: Diagnostic and therapeutic guideline for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48:124–131

    Article  Google Scholar 

  2. 2.

    Créput C, Galicier L, Buyse S, Azoulay E (2008) Understanding organ dysfunction in hemophagocytic lymphohistiocytosis. Intensive Care Med 34:1177–1187

    Article  Google Scholar 

  3. 3.

    Janka GE (2012) Familial and acquired hemphagohistiocytosis. Annu Rev Med 63:233–246

    CAS  Article  Google Scholar 

  4. 4.

    Stepp SE, Dufourcq-Lagelouse R, Le Deist F et al (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 286:1957–1959

    CAS  Article  Google Scholar 

  5. 5.

    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    CAS  Article  Google Scholar 

  6. 6.

    Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, Lambert N, Ouachée-Chardin M, Chedeville G, Tamary H, Minard-Colin V, Vilmer E, Blanche S, le Deist F, Fischer A, de Saint Basile G (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 115:461–473

    CAS  Article  Google Scholar 

  7. 7.

    zur Stadt U, Schmidt S, Kasper B et al (2005) Linkage of familiar hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutation in syntaxin 11. Hum Mol Genet 14:827–834

    Article  Google Scholar 

  8. 8.

    zur Stadt U, Rohr J, Seifert W et al (2009) Familiar hemophagocytic lymphohistiocytosis type 5(FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85:482–492

    CAS  Article  Google Scholar 

  9. 9.

    Usmani GN, Woda BA, Newburger PE (2013) Advances in understanding the pathogenesis of HLH. Br J Haematol 161:609–622

    CAS  Article  Google Scholar 

  10. 10.

    Tsuboi I, Harada T, Hirabayashi Y, Aizawa S (2019) Senescence-accelerated mice (SAMP1/TA-1) treated repeatedly with lipopolysaccharide develop a condition that resembles hemophagocytic lymphohistiocytosis. Haematologica. 104:1995–2005

    CAS  Article  Google Scholar 

  11. 11.

    Canna SW, Wrobel J, Chu N, Kreiger PA, Paessler M, Behrens EM (2013) Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis Rheum 65:1764–1775

    CAS  Article  Google Scholar 

  12. 12.

    Janka GE (2007) Familial and acquired hemophagocytic lymphohistiocytosis. Eur J Pediatr 166:95–109

    Article  Google Scholar 

  13. 13.

    Machowicz R, Janka G, Wiktor-Jedrzejczak W (2017) Similar but not the same: differential diagnosis of HLH and sepsis. Crit Rev Oncol Hematol 114:1–12

    Article  Google Scholar 

  14. 14.

    Schuettpelz LG, Link DC (2013) Regulation of hematopoietic stem cell activity by inflammation. Front Immunol 4:204

    Article  Google Scholar 

  15. 15.

    Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194

    CAS  Article  Google Scholar 

  16. 16.

    Tsuboi I, Morimoto K, Horie T, Mori KJ (1991) Age-related changes in various hematopoietic progenitor cells in senescence-accelerated (SAM-P) mice. Exp Hematol 19:874–877

    CAS  PubMed  Google Scholar 

  17. 17.

    Tsuboi I, Harada T, Hirabayashi Y, Kanno J, Aizawa S (2016) Differential regulation of lympho-myelopoiesis by stromal cells in the early and late phases in BALB/c mice repeatedly exposed to lipopolysaccharide. Biol Pharm Bull 39:1939–1947

    CAS  Article  Google Scholar 

  18. 18.

    Tsuboi I, Harada T, Hirabayashi Y, Kanno J, Inoue T, Aizawa S (2012) Age-related decline of mast cell regeneration in senescence-accelerated mice (SAMP1) after chemical myeloablation due to senescent stromal cell impairment. Exp Biol Med 237:1289–1297

    CAS  Article  Google Scholar 

  19. 19.

    Tsuboi I, Hirabayashi Y, Harada T, Hiramoto M, Kanno J, Inoue T, Aizawa S (2008) Predominant regeneration of B-cell lineage, instead of myeloid linage, of the bone marrow after 1 Gy whole-body irradiation in mice: role of differential cytokine expression between B-cell stimulation by IL10, Flt3 ligand and IL7 and myeloid suppression by GM-CSF and SCF. Radiat Res 170:15–22

    CAS  Article  Google Scholar 

  20. 20.

    Tsuboi I, Hirabayashi Y, Harada T, Koshinaga M, Kawamata T, Kanno J, Inoue T, Aizawa S (2008) Role of hematopoietic microenvironment in prolonged impairment of B cell regeneration in age-related stromal-cell-impaired SAMP1 mouse: effects of a single dose of 5-fluorouracil. J Appl Toxicol 28:797–805

    CAS  Article  Google Scholar 

  21. 21.

    Dexter TM, Allen TD, Lajtha LG (1977) Condition controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol 91:335–344

    CAS  Article  Google Scholar 

  22. 22.

    Mori KJ, Fujitake H, Okubo H, Dexter TM, Ito Y (1979) Quantitative development of adherent cell colonies in bone marrow cell culture in vitro. Exp Hematol 7:171–176

    CAS  PubMed  Google Scholar 

  23. 23.

    Aizawa S, Yaguchi M, Nakano M et al (1994) Hematopoietic supportive function of human bone marrow stromal cell lines established by a recombinant SV40-adenovirus vector. Exp Hematol 22:482–487

    CAS  PubMed  Google Scholar 

  24. 24.

    Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 119:2991–3002

    CAS  Article  Google Scholar 

  25. 25.

    Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201:1771–1780

    CAS  Article  Google Scholar 

  26. 26.

    Pascutti MF, Erkelen MN, Nolte MA (2016) Impact of viral infections on hematopoiesis: From beneficial to detrimental effects on bone marrow output. Front Immunol 7:364

    Article  Google Scholar 

  27. 27.

    Schepers K, Campbell TB, Passegué E (2015) Normal and leukemic niches: Insight and therapeutic opportunities. Cell Stem Cell 16:254–267

    CAS  Article  Google Scholar 

  28. 28.

    Nombela-Arrieta C, Isringhausen S (2017) The role of the bone marrow stromal compartment in the hematopoietic response to microbial infections. Front Immunol 7:689

    Article  Google Scholar 

  29. 29.

    Cain D, Kondo M, Chen H, Kelsoe G (2009) Effect of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 129:266–277

    CAS  Article  Google Scholar 

  30. 30.

    Carbonneau CL, Desparas G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T, Beauséjour CM (2012) Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow –derived stromal cell populations interferes with bone marrow homeostasis. Blood. 119:717–726

    CAS  Article  Google Scholar 

  31. 31.

    Feng X, Feng G, Xing J, Shen B, Tan W, Huang D, Lu X, Tao T, Zhang J, Li L, Gu Z (2014) Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell Tissue Res 356:369–380

    CAS  Article  Google Scholar 

  32. 32.

    Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502

    Article  Google Scholar 

Download references


We thank Sonoko Araki and Miyuki Yuda for technical assistance.


This work has been supported in part by a Grant-in Aid for Science Research C from the Japan Society for the Promotion of Science (Grant Number JP18K06846).

Author information




All authors participated in the design and interpretation of the study, analysis of the data, and review of the manuscript; IT, TH, and SA conducted the experiments; IT, TI, YH, and SA wrote the manuscript.

Corresponding author

Correspondence to Isao Tsuboi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsuboi, I., Harada, T., Hirabayashi, Y. et al. Dynamics of hematopoiesis is disrupted by impaired hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis. Ann Hematol 99, 1515–1523 (2020). https://doi.org/10.1007/s00277-020-04095-2

Download citation


  • Hemophagocytic lymphohistiocytosis
  • Hematopoiesis
  • Stromal cell
  • Senescence-accelerated mouse
  • Cytokine