Skip to main content

Advertisement

Log in

Copper deficiency anemia: review article

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Copper is a crucial micronutrient needed by animals and humans for proper organ function and metabolic processes such as hemoglobin synthesis, as a neurotransmitter, for iron oxidation, cellular respiration, and antioxidant defense peptide amidation, and in the formation of pigments and connective tissue. Multiple factors, either hereditary or acquired, contribute to the increase in copper deficiency seen clinically over the past decades. The uptake of dietary copper into intestinal cells is via the Ctr1 transporter, located at the apical membrane aspect of intestinal cells and in most tissues. Copper is excreted from enterocytes into the blood via the Cu-ATPase, ATP7A, by trafficking the transporter towards the basolateral membrane. Zinc is another important micronutrient in animals and humans. Although zinc absorption may occur by direct interaction with the Ctr1 transporter, its absorption is slightly different. Copper deficiency affects physiologic systems such as bone marrow hematopoiesis, optic nerve function, and the nervous system in general. Detailed pathophysiology and its related diseases are explained in this manuscript. Diagnosis is made by measuring serum copper, serum ceruloplasmin, and 24-h urine copper levels. Copper deficiency anemia is treated with oral or intravenous copper replacement in the form of copper gluconate, copper sulfate, or copper chloride. Hematological manifestations are fully reversible with copper supplementation over a 4- to 12-week period. However, neurological manifestations are only partially reversible with copper supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763(7):737–746

    Article  PubMed  CAS  Google Scholar 

  2. Prohaska JR (2012) Copper. In: Present knowledge in nutrition. Wiley-Blackwell, pp 540–553

  3. Chambers A, Krewski D, Plunkett L (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev 13(7–8):546–578

    Article  PubMed  CAS  Google Scholar 

  4. Bhutta ZA, Nizami SQ, Isani Z (1999) Zinc supplementation in malnourished children with persistent diarrhea in Pakistan. Pediatrics 103(4):e42

    Article  PubMed  CAS  Google Scholar 

  5. USDA National Nutrient Database for Standard Reference, Release 28, Copper Cu(mcg) content of selected foods per common measure. Accessed October 28, 2015

  6. Nose Y, Rees EM, Thiele DJ (2006) Structure of the Ctr1 copper trans’PORE’ter reveals novel architecture. Trends Biochem Sci 31(11):604–607

    Article  PubMed  CAS  Google Scholar 

  7. Crampton RF, Matthews DM, Poisner R (1965) Observations on the mechanism of absorption of copper by the small intestine. J Physiol 178:111–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Evans GW (1976) LeBlane FN: copper binding protein in rat intestine: amino acid composition and function. Nutr Rept Intern 14:281

    CAS  Google Scholar 

  9. Monty JF, Llanos RM, Mercer JF, Kramer DR (2005) Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J Nutr 135(12):2762–2766

    Article  PubMed  CAS  Google Scholar 

  10. Ravia JJ, Stephen RM, Ghishan FK, Collins JF (2005) Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J Biol Chem 280(43):36221–36227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mason KE (1979) A conspectus of research on copper metabolism and requirements of man. J Nutr 109(11):1979–2066

    Article  PubMed  CAS  Google Scholar 

  12. Cox DW, Roberts EA. Wilson disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. 8th ed.: Saunders; 2006:P 1601

  13. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763(7):747–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cobine PA, Pierrel F, Winge DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763(7):759–772

    Article  PubMed  CAS  Google Scholar 

  15. Bohm M, Pronicka E, Karczmarewicz E (2006) Retrospective multicentric study of 180 children with cytochrome C oxidase deficiency. Pediatr Res 59:21–26

    Article  PubMed  Google Scholar 

  16. Turnland JR (2000) Copper. In: Modern nutrition in health and disease. Lippincott, Philadelphia

    Google Scholar 

  17. Cartwright GE, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr 14:224–232

    Article  PubMed  CAS  Google Scholar 

  18. King JCKC (2000) Modern nutrition in health and disease. Lippincott, Philadelphia

    Google Scholar 

  19. Sandstrom B (1997) Bioavailability of zinc. Eur J Clin Nutr 51(Suppl 1):S17–S19

    PubMed  Google Scholar 

  20. Weigand E (1983) Absorption of trace elements: zinc. ​Int J Vitam Nutr Res Suppl 25:67–81

    PubMed  CAS  Google Scholar 

  21. Cousins RJ, Lee-Ambrose LM (1992) Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr 122(1):56–64

    Article  PubMed  CAS  Google Scholar 

  22. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    Article  PubMed  CAS  Google Scholar 

  23. Douglass CW, Shih A, Ostry L (2002) Will there be a need for complete dentures in the United States in 2020? J Prosthet Dent 87(1):5–8

    Article  PubMed  Google Scholar 

  24. Shah NB GM, Holeva KT, Inventor; Richarson-Vicks, Inc, assignee. Denture stabilizing zinc and strontium salts of AVE/MA copolymer. US patent 4758630. July 19, 1988, 1988

  25. Wiley JS, Moore MR. Heme biosynthesis and its disorders: porphrias and sideroblastic anemias. In: Hoffman R, Benz EJ Jr, Shattil SJ, eds. Hematology: basic principles and practice. 5th ed. Philadephila (PA): Churchill Livingstone Elsevier; 2009:P.488

  26. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabetic Federation. Diabet Med 23(5):469–480

    Article  PubMed  CAS  Google Scholar 

  27. Livingston EH (2007) Bariatric surgery in the new millennium. Arch Surg 142(10):919–922

    Article  PubMed  Google Scholar 

  28. Bernert PC, Ciangura C, Coupaye M, Czernichow S, Bouillot JL, Basdevant A (2007) Nutritional deficiency after gastric bypass: diagnosis, prevention and treatment. Diabetes Metab 33(1):13–24

    Article  CAS  Google Scholar 

  29. Alvarez-Leite JI (2004) Nutrient deficiencies secondary to bariatric surgery. Curr Opin Clin Nutr Metab Care 7(5):569–575

    Article  PubMed  Google Scholar 

  30. Haddad AS, Subbiah V, Lichtin AE, Theil KS, Maciejewski JP (2008) Hypocupremia and bone marrow failure. Haematologica 93(1):e1–e5

    Article  PubMed  CAS  Google Scholar 

  31. Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF (2009) Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring, Md) 17(4):827–831

    Article  CAS  Google Scholar 

  32. Gletsu-Miller N, Broderius M, Frediani JK, Zhao VM, Griffith DP, Davis SS, Sweeney JF, Lin E, Prohaska JR, Ziegler TR (2012) Incidence and prevalence of copper deficiency following Roux-en-y gastric bypass surgery. Int J Obes (Lond) 36(3):328–335

    Article  CAS  Google Scholar 

  33. Ernst B, Thurnheer M, Schultes B (2009) Copper deficiency after gastric bypass surgery. Obesity (Silver Spring, Md). 17(11):1980–1981

    Article  Google Scholar 

  34. Atkinson RL, Dahms WT, Bray GA, Jacob R, Sandstead HH (1978) Plasma zinc and copper in obesity and after intestinal bypass. Ann Intern Med 89(4):491–493

    Article  PubMed  CAS  Google Scholar 

  35. Faber J, Randolph JG, Robbins S, Smith JC (1978) Zinc and copper status in young patients following jejunoileal bypass. J Surg Res 24(2):83–86

    Article  PubMed  CAS  Google Scholar 

  36. Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80(6):523–531

    Article  PubMed  CAS  Google Scholar 

  37. de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Martin T (2008) Clinical results and nutritional consequences of biliopancreatic diversion: three years of follow-up. Ann Nutr Metab 53(3–4):234–239

    Article  PubMed  CAS  Google Scholar 

  38. Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257(6):869–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Prodan CI, Bottomley SS, Vincent AS, Cowan LD, Meerveld BGV, Holland NR, Lind SE (2009) Copper deficiency after gastric surgery: a reason for caution. Am J Med Sci 337(4):256–258

    Article  PubMed  Google Scholar 

  40. Fleming CR, Hodges RE, Hurley LS (1976) A prospective study of serum copper and zinc levels in patients receiving total parenteral nutrition. Amer J Clin Nutr 29:70–77

    Article  PubMed  CAS  Google Scholar 

  41. Dembinski K, Gargasz AE, Dabrow S, Rodriguez L (2012) Three distinct cases of copper deficiency in hospitalized pediatric patients. Clin Pediatr 51(8):759–762

    Article  Google Scholar 

  42. Sternlieb I, Janowitz HD (1964) Absorption of copper in malabsorption syndromes. J Clin Invest 43:1049–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jaiser SR, Winston GP (2010 Jun) Copper deficiency myelopathy. J Neurol 257(6):869–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ito Y, Ando T, Nabeshima T (2005) Latent copper deficiency in patients receiving low-copper enteral nutrition for a prolonged period. JPEN J Parenter Enteral Nutr 29:360–366

    Article  PubMed  CAS  Google Scholar 

  45. Gabreyes AA, Abbasi HN, Forbes KP, McQuaker G, Duncan A, Morrison I (2013) Hypocupremia associated cytopenia and myelopathy: a national retrospective review. Eur J Haematol 90(1):1–9

    Article  PubMed  CAS  Google Scholar 

  46. Huff JD, Keung YK, Thakuri M, Beaty MW, Hurd DD, Owen J, Molnár I (2007) Copper deficiency causes reversible myelodysplasia. Am J Hematol 82(7):625–630

    Article  PubMed  CAS  Google Scholar 

  47. Halfdanarson TR. Kumar N, Li CY. Hematological manifestions of copper deficiency: a retrospective review. Eur J Hematol ISSN 0902-4441

  48. Green R (2012) Anemias beyond B12 and iron deficiency: the buzz about other B’s, elementary, and nonelementary problems. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program 2012:492–498

    Google Scholar 

  49. Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Bhushan V, Kroft SH (2005) Zinc-induced copper deficiency: a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123(1):125–131

    Article  PubMed  Google Scholar 

  50. Williams DM, Loukopoulos D, Lee GR (1976) Role of copper in mitochondrial iron metabolism. Blood 48:77–85

    PubMed  CAS  Google Scholar 

  51. Deloughery TG (2014) Microcytic anemia. N Engl J Med 371:1324–1331

    Article  PubMed  CAS  Google Scholar 

  52. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797s–811s

    PubMed  CAS  Google Scholar 

  53. Ames BN, Atamna H, Killilea DW (2005) Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Asp Med 26(4–5):363–378

    Article  CAS  Google Scholar 

  54. Bleackley MR, Wong AY, Hudson DM, Wu CH, Macgillivray RT (2009) Blood iron homeostasis: newly discovered proteins and iron imbalance. Transfus Med Rev 23(2):103–123

    Article  PubMed  Google Scholar 

  55. Peled T, Glukhman E, Hasson N, Adi S, Assor H, Yudin D, Landor C, Mandel J, Landau E, Prus E, Nagler A, Fibach E (2005) Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 33(10):1092–1100

    Article  PubMed  CAS  Google Scholar 

  56. Schleper B, Stuerenburg HJ (2001) Copper deficiency-associated myelopathy in a 46-year-old woman. J Neurol 248(8):705–706

    Article  PubMed  CAS  Google Scholar 

  57. Gregg XT, Reddy V, Prchal JT (2002) Copper deficiency masquerading as myelodysplastic syndrome. Blood 100(4):1493–1495

    Article  PubMed  CAS  Google Scholar 

  58. Mechanick KI, Youdim A, Jones DB (2013) Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient 2013 update: cosponsored by American Society for Metabolic & Bariatric Surgery. Obestiy 21(01):S-27

    Google Scholar 

Download references

Acknowledgements

The authors thank Heather N. Russell-Simmons and the Markey Cancer Center Research Communications Office for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zin W. Myint.

Ethics declarations

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myint, Z.W., Oo, T.H., Thein, K.Z. et al. Copper deficiency anemia: review article. Ann Hematol 97, 1527–1534 (2018). https://doi.org/10.1007/s00277-018-3407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3407-5

Keywords

Navigation