Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG

  • Elena Zerkalenkova
  • Agnesa Panfyorova
  • Anna Kazakova
  • Pavel Baryshev
  • Larisa Shelihova
  • Irina Kalinina
  • Galina Novichkova
  • Michael Maschan
  • Aleksey Maschan
  • Yulia Olshanskaya
Original Article

Abstract

T(16;21)(p11;q22)/FUS-ERG is a rare but recurrent translocation in acute leukemias and in some types of solid tumors. Due to multiple types of FUS-ERG transcripts, PCR-based minimal residual disease detection is impeded. In this study, we evaluated a cohort of pediatric patients with t(16;21)(p11;q22)/FUS-ERG and revealed fusion gene breakpoints. We implemented next-generation sequencing (NGS) on long PCR amplicons for the detection of fusion genes with unknown partners or DNA breakpoints. That allowed us to describe different fusion variants of FUS/ERG in different patients and to detect MRD on both RNA and DNA levels. We also found several accompanying mutations in epigenetic regulators (DNMT3A, ASXL1, BCOR) by targeted NGS approach in AML cases. These mutations preceded full transformation by t(16;21)(p11;q22)/FUS-ERG and allowed us to trace clonal evolution on all steps of therapy. As a casual observation, the ASXL1 mutation was found in the unrelated donor hematopoietic cells.

Keywords

Cytogenetics Molecular genetics Leukemia AML-molecular diagnosis & therapy Marrow/stem cell transplantation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Informed Consent

Informed consents from all the patients’ parents were obtained.

References

  1. 1.
    Imashuku S, Hibi S, Kuriyama K, Todo S (1999) Hemophagocytosis by leukemic blasts in a case of acute megakaryoblastic leukemia with t(16;21)(p11;q22). Int J Hematol 70(1):36–39PubMedGoogle Scholar
  2. 2.
    Jeandidier E, Dastugue N, Mugneret F, Lafage-Pochitaloff M, Mozziconacci MJ, Herens C, Michaux L, Verellen-Dumoulin C, Talmant P, Cornillet-Lefebvre P, Luquet I, Charrin C, Barin C, Collonge-Rame MA, Perot C, Van den Akker J, Gregoire MJ, Jonveaux P, Baranger L, Eclache-Saudreau V, Pages MP, Cabrol C, Terre C, Berger R (2006) Abnormalities of the long arm of chromosome 21 in 107 patients with hematopoietic disorders: a collaborative retrospective study of the Groupe Francais de Cytogenetique Hematologique. Cancer Genet Cytogenet 166(1):1–11.  https://doi.org/10.1016/j.cancergencyto.2005.08.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Jekarl DW, Kim M, Lim J, Kim Y, Han K, Lee AW, Kim HJ, Min WS (2010) CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). Int J Hematol 92(2):306–313.  https://doi.org/10.1007/s12185-010-0650-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N, Kaneko Y, Sako M, Kobayashi Y, Tojou A, Miura I, Kakuda H, Funabiki T, Horibe K, Hamaguchi H, Akiyama Y, Bessho F, Yanagisawa M, Hayashi Y (1997) Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 90(3):1192–1199PubMedGoogle Scholar
  5. 5.
    Heller A, Loncarevic IF, Glaser M, Gebhart E, Trautmann U, Claussen U, Liehr T (2004) Breakpoint differentiation in chromosomal aberrations of hematological malignancies: identification of 33 previously unrecorded breakpoints. Int J Oncol 24(1):127–136PubMedGoogle Scholar
  6. 6.
    Kanazawa T, Ogawa C, Taketani T, Taki T, Hayashi Y, Morikawa A (2005) TLS/FUS-ERG fusion gene in acute lymphoblastic leukemia with t(16;21)(p11;q22) and monitoring of minimal residual disease. Leukemia & lymphoma 46(12):1833–1835.  https://doi.org/10.1080/10428190500162203 CrossRefGoogle Scholar
  7. 7.
    Oh SH, Park TS, Choi JR, Lee S, Cho SY, Kim SY, Kim J, Park JK, Song SA, Lee JY, Shin JH, Kim HR, Lee JN (2010) Two childhood cases of acute leukemia with t(16;21)(p11.2;q22): second case report of infantile acute lymphoblastic leukemia with unusual type of FUS-ERG chimeric transcript. Cancer Genet Cytogenet 200(2):180–183.  https://doi.org/10.1016/j.cancergencyto.2010.04.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Marosi C, Bettelheim P, Geissler K, Lechner K, Koller U, Haas OA, Chott A, Hagemeijer A (1991) Translocation (16;21)(p11;q22) in acute monoblastic leukemia with erythrophagocytosis. Cancer Genet Cytogenet 54(1):61–66.  https://doi.org/10.1016/0165-4608(91)90030-X CrossRefPubMedGoogle Scholar
  9. 9.
    Imashuku S, Hibi S, Sako M, Lin YW, Ikuta K, Nakata Y, Mori T, Iizuka S, Horibe K, Tsunematsu Y (2000) Hemophagocytosis by leukemic blasts in 7 acute myeloid leukemia cases with t(16;21)(p11;q22): common morphologic characteristics for this type of leukemia. Cancer 88(8):1970–1975.  https://doi.org/10.1002/(SICI)1097-0142(20000415)88:8<1970::AID-CNCR28>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2017) http://cgap.nci.nih.gov/Chromosomes/Mitelman
  11. 11.
    Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien HF, Wei AH, Lowenberg B, Bloomfield CD (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447.  https://doi.org/10.1182/blood-2016-08-733196 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ichikawa H, Shimizu K, Hayashi Y, Ohki M (1994) An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54(11):2865–2868PubMedGoogle Scholar
  13. 13.
    Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J, Tillman RM, Ramani P, Cullinane C, Coleman N (2003) FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 63(15):4568–4576PubMedGoogle Scholar
  14. 14.
    Choi HW, Shin MG, Sawyer JR, Cho D, Kee SJ, Baek HJ, Kook H, Kim HJ, Shin JH, Suh SP, Hwang TJ, Ryang DW (2006) Unusual type of TLS/FUS-ERG chimeric transcript in a pediatric acute myelocytic leukemia with 47,XX,+10,t(16;21)(p11;q22). Cancer Genet Cytogenet 167(2):172–176.  https://doi.org/10.1016/j.cancergencyto.2006.01.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Seabright M, Gregson N, Mould S (1976) Trisomy 9 associated with an enlarged 9qh segment in a liveborn. Hum Genet 34(3):323–325.  https://doi.org/10.1007/BF00295299 CrossRefPubMedGoogle Scholar
  16. 16.
    ISCN (2016) An international system for human cytogenomic nomenclature (2016) (2016). Karger Publishers, BaselGoogle Scholar
  17. 17.
    Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, Delattre O (1997) A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14(10):1159–1164.  https://doi.org/10.1038/sj.onc.1200933 CrossRefPubMedGoogle Scholar
  18. 18.
    Berg T, Kalsaas AH, Buechner J, Busund LT (2009) Ewing sarcoma-peripheral neuroectodermal tumor of the kidney with a FUS-ERG fusion transcript. Cancer Genet Cytogenet 194(1):53–57.  https://doi.org/10.1016/j.cancergencyto.2009.06.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Ferro MR, Cabello P, Garcia-Sagredo JM, Resino M, San Roman C, Larana JG (1992) t(16;21) in a Ph positive CML. Cancer Genet Cytogenet 60(2):210–211.  https://doi.org/10.1016/0165-4608(92)90022-Z CrossRefPubMedGoogle Scholar
  20. 20.
    Cocce MC, Alonso CN, Rossi J, Felice MS, Gitter MR, Gallego MS (2015) A case of pediatric ALL with t(16;21)(p11.2;q22) and FUS-ERG rearrangement. Blood research 50(1):55–58.  https://doi.org/10.5045/br.2015.50.1.55 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 20(10):3345–3354.  https://doi.org/10.1128/MCB.20.10.3345-3354.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Panagopoulos I, Gorunova L, Zeller B, Tierens A, Heim S (2013) Cryptic FUS-ERG fusion identified by RNA-sequencing in childhood acute myeloid leukemia. Oncol Rep 30(6):2587–2592.  https://doi.org/10.3892/or.2013.2751 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ichikawa H, Shimizu K, Katsu R, Ohki M (1999) Dual transforming activities of the FUS (TLS)-ERG leukemia fusion protein conferred by two N-terminal domains of FUS (TLS). Mol Cell Biol 19(11):7639–7650.  https://doi.org/10.1128/MCB.19.11.7639 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ismael O, Shimada A, Elmahdi S, Elshazley M, Muramatsu H, Hama A, Takahashi Y, Yamada M, Yamashita Y, Horide K, Kojima S (2014) RUNX1 mutation associated with clonal evolution in relapsed pediatric acute myeloid leukemia with t(16;21)(p11;q22). Int J Hematol 99(2):169–174.  https://doi.org/10.1007/s12185-013-1495-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Auewarakul CU, Leecharendkeat A, Tocharoentanaphol C, Promsuwicha O, Sritana N, Thongnoppakhun W (2007) AML1 mutation and its coexistence with different transcription factor gene families in de novo acute myeloid leukemia (AML): redundancy or synergism. Haematologica 92(6):861–862.  https://doi.org/10.3324/haematol.10914 CrossRefPubMedGoogle Scholar
  26. 26.
    Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MR, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089.  https://doi.org/10.1056/NEJMoa1112304 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang L, Rau R, Goodell MA (2015) DNMT3A in haematological malignancies. Nat Rev Cancer 15(3):152–165.  https://doi.org/10.1038/nrc3895 CrossRefPubMedGoogle Scholar
  28. 28.
    Young AL, Challen GA, Birmann BM, Druley TE (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484.  https://doi.org/10.1038/ncomms12484 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433.  https://doi.org/10.1056/NEJMoa1005143 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43(4):309–315.  https://doi.org/10.1038/ng.788 CrossRefPubMedGoogle Scholar
  31. 31.
    Thol F, Heuser M, Damm F, Klusmann JH, Reinhardt K, Reinhardt D (2011) DNMT3A mutations are rare in childhood acute myeloid leukemia. Haematologica 96(8):1238–1240.  https://doi.org/10.3324/haematol.2011.046839 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shiba N, Taki T, Park MJ, Shimada A, Sotomatsu M, Adachi S, Tawa A, Horibe K, Tsuchida M, Hanada R, Tsukimoto I, Arakawa H, Hayashi Y (2012) DNMT3A mutations are rare in childhood acute myeloid leukaemia, myelodysplastic syndromes and juvenile myelomonocytic leukaemia. Br J Haematol 156(3):413–414.  https://doi.org/10.1111/j.1365-2141.2011.08879.x CrossRefPubMedGoogle Scholar
  33. 33.
    Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY, Lin LI, Tseng MH, Huang CF, Chiang YC, Lee FY, Liu MC, Liu CW, Tang JL, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF (2012) DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 119(2):559–568.  https://doi.org/10.1182/blood-2011-07-369934 CrossRefPubMedGoogle Scholar
  34. 34.
    Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M, Yun H, Gohring G, Schlegelberger B, Hoelzer D, Lubbert M, Kanz L, Fiedler W, Kirchner H, Heil G, Krauter J, Ganser A, Heuser M (2011) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol : Off J Am Soc Clin Oncol 29(21):2889–2896.  https://doi.org/10.1200/JCO.2011.35.4894 CrossRefGoogle Scholar
  35. 35.
    Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, Nagata Y, Chiba K, Tanaka H, Terui K, Kato M, Park MJ, Ohki K, Shimada A, Takita J, Tomizawa D, Kudo K, Arakawa H, Adachi S, Taga T, Tawa A, Ito E, Horibe K, Sanada M, Miyano S, Ogawa S, Hayashi Y (2016) Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol 175(3):476–489.  https://doi.org/10.1111/bjh.14247 CrossRefPubMedGoogle Scholar
  36. 36.
    Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4(149):149ra118.  https://doi.org/10.1126/scitranslmed.3004315 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, Wartman LD, Christopher M, Lamprecht TL, Helton NM, Duncavage EJ, Payton JE, Baty J, Heath SE, Griffith OL, Shen D, Hundal J, Chang GS, Fulton R, O'Laughlin M, Fronick C, Magrini V, Demeter RT, Larson DE, Kulkarni S, Ozenberger BA, Welch JS, Walter MJ, Graubert TA, Westervelt P, Radich JP, Link DC, Mardis ER, DiPersio JF, Wilson RK, Ley TJ (2015) Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 314(8):811–822.  https://doi.org/10.1001/jama.2015.9643 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ploen GG, Nederby L, Guldberg P, Hansen M, Ebbesen LH, Jensen UB, Hokland P, Aggerholm A (2014) Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol 167(4):478–486.  https://doi.org/10.1111/bjh.13062 CrossRefPubMedGoogle Scholar
  39. 39.
    Sun Y, Shen H, Xu T, Yang Z, Qiu H, Sun A, Chen S, Wu D, Xu Y (2016) Persistent DNMT3A mutation burden in DNMT3A mutated adult cytogenetically normal acute myeloid leukemia patients in long-term remission. Leuk Res 49:102–107.  https://doi.org/10.1016/j.leukres.2016.09.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498.  https://doi.org/10.1056/NEJMoa1408617 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landen M, Hoglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Gronberg H, Hultman CM, McCarroll SA (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487.  https://doi.org/10.1056/NEJMoa1409405 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478.  https://doi.org/10.1038/nm.3733 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW, Rucker FG, Holzmann K, Paschka P, Kapp-Schworer S, Spath D, Kindler T, Schittenhelm M, Krauter J, Ganser A, Gohring G, Schlegelberger B, Schlenk RF, Dohner H, Dohner K (2013) Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 122(1):100–108.  https://doi.org/10.1182/blood-2013-01-479188 CrossRefPubMedGoogle Scholar
  44. 44.
    Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, Raza A, Kantarjian H, Levine RL, Neuberg D, Garcia-Manero G, Ebert BL (2012) Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol: Off J Am Soc Clin Oncol 30(27):3376–3382.  https://doi.org/10.1200/JCO.2011.40.7379 CrossRefGoogle Scholar
  45. 45.
    Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, Lagarde A, Prebet T, Nezri M, Sainty D, Olschwang S, Xerri L, Chaffanet M, Mozziconacci MJ, Vey N, Birnbaum D (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 145(6):788–800.  https://doi.org/10.1111/j.1365-2141.2009.07697.x CrossRefPubMedGoogle Scholar
  46. 46.
    Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B, Finetti P, Murati A, Arnoulet C, Zerazhi H, Fezoui H, Tadrist Z, Nezri M, Chaffanet M, Mozziconacci MJ, Vey N, Birnbaum D (2010) ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 151(4):365–375.  https://doi.org/10.1111/j.1365-2141.2010.08381.x CrossRefPubMedGoogle Scholar
  47. 47.
    Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Ko BS, Wu SJ, Huang SY, Hsu SC, Chen YC, Huang YN, Chang YC, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, Tien HF (2010) Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 116(20):4086–4094.  https://doi.org/10.1182/blood-2010-05-283291 CrossRefPubMedGoogle Scholar
  48. 48.
    Liang DC, Liu HC, Yang CP, Jaing TH, Hung IJ, Yeh TC, Chen SH, Hou JY, Huang YJ, Shih YS, Huang YH, Lin TH, Shih LY (2013) Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood 121(15):2988–2995.  https://doi.org/10.1182/blood-2012-06-436782 CrossRefPubMedGoogle Scholar
  49. 49.
    West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD (2014) Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica 99(2):276–281.  https://doi.org/10.3324/haematol.2013.090217 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tiacci E, Grossmann V, Martelli MP, Kohlmann A, Haferlach T, Falini B (2012) The corepressors BCOR and BCORL1: two novel players in acute myeloid leukemia. Haematologica 97(1):3–5.  https://doi.org/10.3324/haematol.2011.057901 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    de Rooij JD, van den Heuvel-Eibrink MM, Hermkens MC, Verboon LJ, Arentsen-Peters ST, Fornerod M, Baruchel A, Stary J, Reinhardt D, de Haas V, Pieters R, Zwaan CM (2015) BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Haematologica 100(5):e194–e195.  https://doi.org/10.3324/haematol.2014.117796 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer KA, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B (2011) Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 118(23):6153–6163.  https://doi.org/10.1182/blood-2011-07-365320 CrossRefPubMedGoogle Scholar
  53. 53.
    Xu L, Gu ZH, Li Y, Zhang JL, Chang CK, Pan CM, Shi JY, Shen Y, Chen B, Wang YY, Jiang L, Lu J, Xu X, Tan JL, Chen Y, Wang SY, Li X, Chen Z, Chen SJ (2014) Genomic landscape of CD34+ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers. Proc Natl Acad Sci U S A 111(23):8589–8594.  https://doi.org/10.1073/pnas.1407688111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elena Zerkalenkova
    • 1
  • Agnesa Panfyorova
    • 1
  • Anna Kazakova
    • 1
  • Pavel Baryshev
    • 1
  • Larisa Shelihova
    • 1
  • Irina Kalinina
    • 1
  • Galina Novichkova
    • 1
  • Michael Maschan
    • 1
  • Aleksey Maschan
    • 1
  • Yulia Olshanskaya
    • 1
  1. 1.Dmitry Rogachev Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussia

Personalised recommendations