Skip to main content
Log in

Plasma levels of complement activation fragments C3b and sC5b-9 significantly increased in patients with thrombotic microangiopathy after allogeneic stem cell transplantation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Transplantation-associated thrombotic microangiopathy (TA-TMA) is an uncommon but severe complication in patients undergoing allogeneic stem cell transplantation (allo-SCT). However, the mechanism is unclear. From 2011 to 2014, 20 patients with TA-TMA, 20 patients without, and 54 patients with various other complications, including veno occlusive disease (VOD), graft-versus-host disease (GVHD), and infection, were recruited in the study. Plasma vWF antigen (vWFAg), vWF activity (vWFAc), and ADAMTS13 activity were determined in these patients by ELISAs and FRETS-vWF73 assay, respectively. Plasma C3b, sC5b-9, and CH50 were also determined by ELISAs. Plasma levels of C3b were significantly increased in patients with either TA-TMA (p < 0.0001) or GVHD (p < 0.01). Plasma sC5b-9 and CH50 levels in patients with TA-TMA were also significantly increased (p < 0.001). Plasma ADAMTS13 activity was lower in patients with VOD, but normal with other complications. Both plasma vWFAg and vWFAc levels were not elevated in patients with TA-TMA or VOD compared with those of other groups. Complement activation likely via an alternative pathway (increased C3b, sC5b-9, and CH50) may play a role in the pathogenesis of TA-TMA. ADAMTS13 activity is reduced in VOD, but the ADAMTS13/vWF axis appears to be unaffected in patients with TA-TMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jodele S, Laskin BL, Dandoy CE, Myers KC, El-Bietar J, Davies SM, Goebel J, Dixon BP (2015) A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev 29(3):191–204. doi:10.1016/j.blre.2014.11.001

    Article  PubMed  Google Scholar 

  2. Jodele S, Davies SM, Lane A, Khoury J, Dandoy C, Goebel J, Myers K, Grimley M, Bleesing J, El-Bietar J, Wallace G, Chima RS, Paff Z, Laskin BL (2014) Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults. Blood 124(4):645–653. doi:10.1182/blood-2014-03-564997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Changsirikulchai S, Myerson D, Guthrie KA, McDonald GB, Alpers CE, Hingorani SR (2009) Renal thrombotic microangiopathy after hematopoietic cell transplant: role of GVHD in pathogenesis. Clin J Am Soc Nephrol 4(2):345–353. doi:10.2215/CJN.02070508

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siami K, Kojouri K, Swisher KK, Selby GB, George JN, Laszik ZG (2008) Thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation: an autopsy study. Transplantation 85(1):22–28. doi:10.1097/01.tp.0000297998.33418.7e

    Article  PubMed  Google Scholar 

  5. George JN (2008) Hematopoietic stem cell transplantation-associated thrombotic microangiopathy: defining a disorder. Bone Marrow Transplant 41(11):917–918. doi:10.1038/bmt.2008.7

    Article  CAS  PubMed  Google Scholar 

  6. Laskin BL, Goebel J, Davies SM, Jodele S (2011) Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Blood 118(6):1452–1462. doi:10.1182/blood-2011-02-321315

    Article  CAS  PubMed  Google Scholar 

  7. Thachil J (2009) Nitric oxide in transplantation-related thrombotic microangiopathy. Bone Marrow Transplant 43(6):513–514. doi:10.1038/bmt.2008.350

    Article  CAS  PubMed  Google Scholar 

  8. Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207. doi:10.1016/j.immuni.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  9. Vorup-Jensen T, Boesen T (2011) Protein ultrastructure and the nanoscience of complement activation. Adv Drug Deliv Rev 63(12):1008–1019. doi:10.1016/j.addr.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  10. Wehner J, Morrell CN, Reynolds T, Rodriguez ER, Baldwin WM 3rd (2007) Antibody and complement in transplant vasculopathy. Circ Res 100(2):191–203. doi:10.1161/01.RES.0000255032.33661.88

    Article  CAS  PubMed  Google Scholar 

  11. Holmes LV, Strain L, Staniforth SJ, Moore I, Marchbank K, Kavanagh D, Goodship JA, Cordell HJ, Goodship TH (2013) Determining the population frequency of the CFHR3/CFHR1 deletion at 1q32. PLoS One 8(4):e60352. doi:10.1371/journal.pone.0060352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jodele S, Zhang K, Zou F, Laskin B, Dandoy CE, Myers KC, Lane A, Meller J, Medvedovic M, Chen J, Davies SM (2016) The genetic fingerprint of susceptibility for transplant-associated thrombotic microangiopathy. Blood 127(8):989–996. doi:10.1182/blood-2015-08-663435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laskin BL, Maisel J, Goebel J, Yin HJ, Luo G, Khoury JC, Davies SM, Jodele S (2013) Renal arteriolar C4d deposition: a novel characteristic of hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transplantation 96(2):217–223. doi:10.1097/TP.0b013e31829807aa

    Article  CAS  PubMed  Google Scholar 

  14. de Fontbrune FS, Galambrun C, Sirvent A, Huynh A, Faguer S, Nguyen S, Bay JO, Neven B, Moussi J, Simon L, Xhaard A, Resche-Riggon M, O'Meara A, Fremeaux-Bacchi V, Veyradier A, Socie G, Coppo P, de Latour RP (2015) Use of eculizumab in patients with allogeneic stem cell transplant-associated thrombotic microangiopathy: a study from the SFGM-TC. Transplantation 99(9):1953–1959. doi:10.1097/TP.0000000000000601

    Article  PubMed  Google Scholar 

  15. Jodele S, Fukuda T, Vinks A, Mizuno K, Laskin BL, Goebel J, Dixon BP, Teusink A, Pluthero FG, Lu L, Licht C, Davies SM (2014) Eculizumab therapy in children with severe hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Biol Blood Marrow Transplant 20(4):518–525. doi:10.1016/j.bbmt.2013.12.565

    Article  CAS  PubMed  Google Scholar 

  16. Peffault de Latour R, Xhaard A, Fremeaux-Bacchi V, Coppo P, Fischer AM, Helley D, Socie G (2013) Successful use of eculizumab in a patient with post-transplant thrombotic microangiopathy. Br J Haematol 161(2):279–280. doi:10.1111/bjh.12202

    Article  PubMed  Google Scholar 

  17. George JN, Li X, McMinn JR, Terrell DR, Vesely SK, Selby GB (2004) Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma. Transfusion 44(2):294–304

    Article  PubMed  Google Scholar 

  18. Uderzo C, Bonanomi S, Busca A, Renoldi M, Ferrari P, Iacobelli M, Morreale G, Lanino E, Annaloro C, Volpe AD, Alessandrino P, Longoni D, Locatelli F, Sangalli H, Rovelli A (2006) Risk factors and severe outcome in thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. Transplantation 82(5):638–644. doi:10.1097/01.tp.0000230373.82376.46

    Article  PubMed  Google Scholar 

  19. George JN, Nester CM (2014) Syndromes of thrombotic microangiopathy. N Engl J Med 371(7):654–666. doi:10.1056/NEJMra1312353

    Article  CAS  PubMed  Google Scholar 

  20. Zheng XL (2015) ADAMTS13 and von Willebrand factor in thrombotic thrombocytopenic purpura. Annu Rev Med 66:211–225. doi:10.1146/annurev-med-061813-013241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peyvandi F, Siboni SM, Lambertenghi Deliliers D, Lavoretano S, De Fazio N, Moroni B, Lambertenghi Deliliers G, Mannuccio Mannucci P (2006) Prospective study on the behaviour of the metalloprotease ADAMTS13 and of von Willebrand factor after bone marrow transplantation. Br J Haematol 134(2):187–195. doi:10.1111/j.1365-2141.2006.06126.x

    Article  CAS  PubMed  Google Scholar 

  22. Cho BS, Yahng SA, Lee SE, Eom KS, Kim YJ, Kim HJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW, Min WS, Park CW (2010) Validation of recently proposed consensus criteria for thrombotic microangiopathy after allogeneic hematopoietic stem-cell transplantation. Transplantation 90(8):918–926. doi:10.1097/TP.0b013e3181f24e8d

    Article  CAS  PubMed  Google Scholar 

  23. Tutschka PJ, Copelan EA, Klein JP (1987) Bone marrow transplantation for leukemia following a new busulfan and cyclophosphamide regimen. Blood 70(5):1382–1388

    CAS  PubMed  Google Scholar 

  24. Maloney DG, Molina AJ, Sahebi F, Stockerl-Goldstein KE, Sandmaier BM, Bensinger W, Storer B, Hegenbart U, Somlo G, Chauncey T, Bruno B, Appelbaum FR, Blume KG, Forman SJ, McSweeney P, Storb R (2003) Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 102(9):3447–3454. doi:10.1182/blood-2002-09-2955

    Article  CAS  PubMed  Google Scholar 

  25. Jones RJ, Lee KSK, Beschormer WE (1987) Venoocclusive disease of the 1120 liver following bone marrow transplantation. Transplantation 44(1121):778–783

    Article  CAS  PubMed  Google Scholar 

  26. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED (1995) 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant 15(6):825–828

    CAS  PubMed  Google Scholar 

  27. Zhang L, Lawson HL, Harish VC, Huff JD, Knovich MA, Owen J (2006) Creation of a recombinant peptide substrate for fluorescence resonance energy transfer-based protease assays. Anal Biochem 358(2):298–300. doi:10.1016/j.ab.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  28. Raife TJ, Cao W, Atkinson BS, Bedell B, Montgomery RR, Lentz SR, Johnson GF, Zheng XL (2009) Leukocyte proteases cleave von Willebrand factor at or near the ADAMTS13 cleavage site. Blood 114(8):1666–1674. doi:10.1182/blood-2009-01-195461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nichols WG (2003) Management of infectious complications in the hematopoietic stem cell transplant recipient. J Intensive Care Med 18(6):295–312. doi:10.1177/0885066603258009

    Article  PubMed  Google Scholar 

  30. Jodele S, Licht C, Goebel J, Dixon BP, Zhang K, Sivakumaran TA, Davies SM, Pluthero FG, Lu L, Laskin BL (2013) Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 122(12):2003–2007. doi:10.1182/blood-2013-05-501445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi CM, Schmaier AH, Snell MR, Lazarus HM (2009) Thrombotic microangiopathy in haematopoietic stem cell transplantation: diagnosis and treatment. Drugs 69(2):183–198. doi:10.2165/00003495-200969020-00004

    Article  CAS  PubMed  Google Scholar 

  32. Batts ED, Lazarus HM (2007) Diagnosis and treatment of transplantation-associated thrombotic microangiopathy: real progress or are we still waiting? Bone Marrow Transplant 40(8):709–719. doi:10.1038/sj.bmt.1705758

    Article  CAS  PubMed  Google Scholar 

  33. Ho VT, Cutler C, Carter S, Martin P, Adams R, Horowitz M, Ferrara J, Soiffer R, Giralt S (2005) Blood and marrow transplant clinical trials network toxicity committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11(8):571–575. doi:10.1016/j.bbmt.2005.06.001

    Article  PubMed  Google Scholar 

  34. Noris M, Mescia F, Remuzzi G (2012) STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol 8(11):622–633. doi:10.1038/nrneph.2012.195

    Article  CAS  PubMed  Google Scholar 

  35. George JN, Terrell DR, Vesely SK, Kremer Hovinga JA, Lammle B (2012) Thrombotic microangiopathic syndromes associated with drugs, HIV infection, hematopoietic stem cell transplantation and cancer. Presse Med 41(3 Pt 2):e177–e188. doi:10.1016/j.lpm.2011.10.026

    Article  PubMed  Google Scholar 

  36. Nakamae H, Yamane T, Hasegawa T, Nakamae M, Terada Y, Hagihara K, Ohta K, Hino M (2006) Risk factor analysis for thrombotic microangiopathy after reduced-intensity or myeloablative allogeneic hematopoietic stem cell transplantation. Am J Hematol 81(7):525–531. doi:10.1002/ajh.20648

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Jiangsu Province of China (BE2016665, ZDRCA2016047 and RC2011105), National Nature Science Foundation of China (81270591 and 81670132), Jiangsu Provincial Special Program of Social Development (SBE2016740635), Jiangsu Provincial Special Program of Medical Science (BL2012005), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and NIH R01HL115187-01A1 (to XLZ).

Author contributions

YH and DW conceived and designed the study. JQ, JC, and JW performed the experiments. YT, JS, XM, and FC collected the clinical data. JC and JQ wrote the paper. XLZ, XW, ZW, and CR reviewed and edited the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Depei Wu or Yue Han.

Ethics declarations

All the patients provided written informed consent for the protocol, which was approved by our hospital’s Ethics Committee.

Conflict of interest

XLZ is a member of the speakers’ bureau and has received research support from Alexion and served as a consultant for Ablynx. All other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Wang, J., Chen, J. et al. Plasma levels of complement activation fragments C3b and sC5b-9 significantly increased in patients with thrombotic microangiopathy after allogeneic stem cell transplantation. Ann Hematol 96, 1849–1855 (2017). https://doi.org/10.1007/s00277-017-3092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-3092-9

Keywords

Navigation