Advertisement

Annals of Hematology

, Volume 96, Issue 5, pp 765–777 | Cite as

Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow

Summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) organized by the European Bone Marrow Working Group, Basel 2016
  • Alexandar Tzankov
  • Konnie Hebeda
  • Markus Kremer
  • Roos Leguit
  • Attilio Orazi
  • Jon van der Walt
  • Umberto Gianelli
Original Article

Abstract

Two distinct forms of neoplasms derived from plasmacytoid dendritic cells (PDC) exist: mature PDC proliferations associated with myeloid neoplasms and blastic PDC neoplasms (BPDCN). Ten cases of PDC proliferations and neoplasms in the bone marrow have been submitted to the bone marrow workshop held at the 18th EAHP meeting. Based on observations from the submitted cases, scattered PDC (≤1% of cells) and PDC aggregates (≤10 PDC/HPF) reflect the normal bone marrow composition, while in myelodysplastic syndromes (MDS), there is a propensity for larger/more PDC aggregates (1–5% and 35 PDC/HPF). A shared PTPN11 mutation between a mature PDC proliferation and an accompanying MDS provides evidence of clonal relationship in such instances and shows that PDC are a part of the malignant clone. CD123 and CD303 should be considered backbone markers to histopathologically establish the diagnosis of BPDCN, since they are detectable in almost all cases and properly well on biopsies subjected to different fixations. Expression of some T-cell markers (e.g., CD2 and CD7 but not CD3), B-cell markers (e.g., CD79a but not CD19 and CD20), and myeloid markers (e.g., CD33 and CD117 but not myeloperoxidase) can be observed in BPDCN. Genetical data of the summarized cases corroborate the important role of chromosomal losses in BPDCN. Together with five previously reported instances, one additional workshop case with MYC rearrangement proposes that translocations of MYC may be recurrent. The frequent nature of deleterious mutations of IKZF3 and deletions of IKZF1 suggests a role for the Ikaros family proteins in BPDCN.

Keywords

Plasmacytoid dendritic cells Neoplasm BPCDN Bone marrow biopsy EAHP workshop BCL2 CD123 CD303 Ikaros PTPN11 MYC 

Notes

Acknowledgements

A.T. thanks Prof. Stephan Dirnhofer from the Institute of Pathology at the University Hospital of Basel for putting his immeasurable efforts to organize and host the 18th EAHP meeting in Basel; Petra Huber from the Institute of Pathology at the University Hospital of Basel for her inestimable logistic sustenance; and Rumyana Todorova, a talented young member of the European Bone Marrow Working Group, for her enthusiastic support at the initial examination of all cases submitted for the bone marrow workshops—such young people invigorate and inspire our working group.

The panel acknowledges the case submitters Dr. Corina Dommann-Scherrer from Winterthur, Switzerland (case 103); Dr. Jie Xu from Houston, USA (case 134); Dr. Juehua Gao from Chicago, USA (case 143); Dr. Lauren Smith from Ann Arbor, USA (case 190); Dr. Vathany Sriganeshan from Miami, USA (case 222); Dr. Raymond E. Felgar from Pittsburgh, USA (case 272); Dr. Prashanti Reddy from Carlsbad, USA (case 296); Dr. Konnie Hebeda from Nijmegen, the Netherlands (case 303); Dr. Alexandar Tzankov from Basel, Switzerland (case 310); and Dr. Rahul Matnani from New York, USA (case 184).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lennert K, Remmele W (1958) Karyometrische Untersuchungen an Lymphknotenzellen des Menschen: I. Mitt. Germinoblasten, Lymphoblasten und Lymphozyten. Acta Haematol (Basel) 19:99–113CrossRefGoogle Scholar
  2. 2.
    Grouard G, Rissoan MC, Filgueira L et al (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185:1101–1111CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Horny HP, Feller AC, Horst HA, Lennert K (1987) Immunocytology of plasmacytoid T cells: marker analysis indicates a unique phenotype of this enigmatic cell. Hum Pathol 18:28–32CrossRefPubMedGoogle Scholar
  4. 4.
    Cao W (2009) Molecular characterization of human plasmacytoid dendritic cells. J Clin Immunol 29:257–264CrossRefPubMedGoogle Scholar
  5. 5.
    Cella M, Jarrossay D, Facchetti F et al (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5:919–923CrossRefPubMedGoogle Scholar
  6. 6.
    Mathan TS, Figdor CG, Buschow SI (2013) Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 4:372CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Decalf J, Fernandes S, Longman R et al (2007) Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients. J Exp Med 204:2423–2437CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306CrossRefPubMedGoogle Scholar
  9. 9.
    Penna G, Vulcano M, Roncari A et al (2002) Cutting edge: differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169:6673–6676CrossRefPubMedGoogle Scholar
  10. 10.
    Sozzani S, Vermi W, Del Prete A, Facchetti F (2010) Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol 31:270–277CrossRefPubMedGoogle Scholar
  11. 11.
    Vermi W, Lonardi S, Morassi M et al (2009) Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology 214:877–886CrossRefPubMedGoogle Scholar
  12. 12.
    Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F (2011) Plasmacytoid dendritic cells and cancer. J Leukoc Biol 90:681–690CrossRefPubMedGoogle Scholar
  13. 13.
    Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226CrossRefPubMedGoogle Scholar
  14. 14.
    Charles J, Chaperot L, Salameire D et al (2010) Plasmacytoid dendritic cells and dermatological disorders: focus on their role in autoimmunity and cancer. Eur J Dermatol 20:16–23PubMedGoogle Scholar
  15. 15.
    Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471–485CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu K, Victora GD, Schwickert TA et al (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324:392–397CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Naik SH, Sathe P, Park HY et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226CrossRefPubMedGoogle Scholar
  19. 19.
    Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG (2003) Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198:305–313CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maraskovsky E, Daro E, Roux E et al (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96:878–884PubMedGoogle Scholar
  21. 21.
    Cisse B, Caton ML, Lehner M et al (2008) Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Boiocchi L, Lonardi S, Vermi W, Fisogni S, Facchetti F (2013) BDCA-2 (CD303): a highly specific marker for normal and neoplastic plasmacytoid dendritic cells. Blood 122:296–297CrossRefPubMedGoogle Scholar
  23. 23.
    Herling M, Teitell MA, Shen RR, Medeiros LJ, Jones D (2003) TCL1 expression in plasmacytoid dendritic cells (DC2s) and the related CD4+ CD56+ blastic tumors of skin. Blood 101:5007–5009CrossRefPubMedGoogle Scholar
  24. 24.
    Facchetti F, Cigognetti M, Fisogni S et al (2016) Neoplasms derived from plasmacytoid dendritic cells. Mod Pathol 29:98–111CrossRefPubMedGoogle Scholar
  25. 25.
    Facchetti F, de Wolf-Peeters C, Mason DY et al (1988) Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am J Pathol 133:15–21PubMedPubMedCentralGoogle Scholar
  26. 26.
    Facchetti F, Vermi W, Mason D, Colonna M (2003) The plasmacytoid monocyte/interferon producing cells. Virchows Arch 443:703–717CrossRefPubMedGoogle Scholar
  27. 27.
    Dargent JL, Delannoy A, Pieron P et al (2011) Cutaneous accumulation of plasmacytoid dendritic cells associated with acute myeloid leukemia: a rare condition distinct from blastic plasmacytoid dendritic cell neoplasm. J Cutan Pathol 38:893–898CrossRefPubMedGoogle Scholar
  28. 28.
    Marafioti T, Paterson JC, Ballabio E et al (2008) Novel markers of normal and neoplastic human plasmacytoid dendritic cells. Blood 111:3778–3792CrossRefPubMedGoogle Scholar
  29. 29.
    Facchetti F, De Wolf-Peeters C, van den Oord JJ, De vos R, Desmet VJ (1988) Plasmacytoid T cells: a cell population normally present in the reactive lymph node. An immunohistochemical and electronmicroscopic study. Hum Pathol 19:1085–1092CrossRefPubMedGoogle Scholar
  30. 30.
    Vermi W, Facchetti F, Rosati S et al (2004) Nodal and extranodal tumor-forming accumulation of plasmacytoid monocytes/interferon-producing cells associated with myeloid disorders. Am J Surg Pathol 28:585–595CrossRefPubMedGoogle Scholar
  31. 31.
    Vitte F, Fabiani B, Benet C et al (2012) Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations: a study of 42 cases. Am J Surg Pathol 36:1302–1316CrossRefPubMedGoogle Scholar
  32. 32.
    Benet C, Gomez A, Aguilar C et al (2011) Histologic and immunohistologic characterization of skin localization of myeloid disorders: a study of 173 cases. Am J Clin Pathol 135:278–290CrossRefPubMedGoogle Scholar
  33. 33.
    Horny HP, Kaiserling E, Handgretinger R et al (1995) Evidence for a lymphotropic nature of circulating plasmacytoid monocytes: findings from a case of CD56+ chronic myelomonocytic leukemia. Eur J Haematol 54:209–216CrossRefPubMedGoogle Scholar
  34. 34.
    Facchetti F, Jones DM, Petrella T (2008) Blastic plasmacytoid dendritic cells neoplasm. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon, France, pp 145–147Google Scholar
  35. 35.
    Chopin M, Preston SP, Lun AT et al (2016) RUNX2 mediates plasmacytoid dendritic cell egress from the bone marrow and controls viral immunity. Cell Rep 15:866–878CrossRefGoogle Scholar
  36. 36.
    Hirohata S, Yanagida T, Tomita T, Yoshikawa H (2014) Increased generation of pre-plasmacytoid dendritic cells in bone marrow of rheumatoid arthritis. Mod Rheumatol 24:443–447CrossRefPubMedGoogle Scholar
  37. 37.
    Jegalian AG, Facchetti F, Jaffe ES (2009) Plasmacytoid dendritic cells. Physiologic roles and pathologic states. Adv Anat Pathol 16:392–404CrossRefPubMedGoogle Scholar
  38. 38.
    Fitzgerald-Bocarsly P, Dai J, Singh S (2008) Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev 19:3–19CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ito T, Wang YH, Liu YJ (2005) Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by toll-like receptor (TLR) 7 and TLR9. Springer Semin Immunopathol 26:221–229CrossRefPubMedGoogle Scholar
  40. 40.
    Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–870CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    von Landenberg P, Bauer S (2007) Nucleic acid recognizing toll-like receptors and autoimmunity. Curr Opin Immunol 19:606–610CrossRefGoogle Scholar
  42. 42.
    Vallin H, Blomberg S, Alm GV, Cederblad B, Rönnblom L (1999) Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leukocytes resembling immature dendritic cells. Clin Exp Immunol 115:196–202CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392CrossRefPubMedGoogle Scholar
  44. 44.
    Cederblad B, Blomberg S, Vallin H et al (1998) Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha producing cells. J Autoimmun 11:465–470CrossRefPubMedGoogle Scholar
  45. 45.
    Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL (2001) Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 159:237–243CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wollenberg A, Wagner M, Gunther S et al (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119:1096–1102CrossRefPubMedGoogle Scholar
  47. 47.
    Santoro A, Majorana A, Roversi L et al (2005) Recruitment of dendritic cells in oral lichen planus. J Pathol 205:426–434CrossRefPubMedGoogle Scholar
  48. 48.
    Facchetti F, de Wolf-Peeters C, van den Oord JJ et al (1989) Plasmacytoid monocytes (so-called plasmacytoid T-cells) in Kikuchi's lymphadenitis. An immunohistologic study. Am J Clin Pathol 92:42–50CrossRefPubMedGoogle Scholar
  49. 49.
    Harris NL, Bhan AK (1987) “Plasmacytoid T cells” in Castleman's disease. Immunohistologic phenotype. Am J Surg Pathol 11:109–113CrossRefPubMedGoogle Scholar
  50. 50.
    Munn DH, Sharma MD, Hou D et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sharma MD, Baban B, Chandler P et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR (2008) The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 181:5396–5404CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Weissmann S, Alpermann T, Grossmann V et al (2012) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26:934–942CrossRefPubMedGoogle Scholar
  54. 54.
    Orazi A, Chiu R, O'Malley DP et al (2006) Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol 19:1536–1545CrossRefPubMedGoogle Scholar
  55. 55.
    Harris NL, Demirjian Z (1991) Plasmacytoid T-zone cell proliferation in a patient with chronic myelomonocytic leukemia. Histologic and immunohistologic characterization. Am J Surg Pathol 15:87–95CrossRefPubMedGoogle Scholar
  56. 56.
    Chen YC, Chou JM, Ketterling RP, Letendre L, Li CY (2003) Histologic and immunohistochemical study of bone marrow monocytic nodules in 21 cases with myelodysplasia. Am J Clin Pathol 120:874–881CrossRefPubMedGoogle Scholar
  57. 57.
    Pileri SA, Ascani S, Cox MC et al (2007) Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21:340–350CrossRefPubMedGoogle Scholar
  58. 58.
    Bodmer A, Menter T, Juskevicius D et al (2017) Sharing of a PTPN11 mutation by myelodysplastic bone marrow and a mature plasmacytoid dendritic cell proliferation provides evidence for their common myelomonocytic origin. Virchows Arch. doi: 10.1007/s00428-017-2075-5 PubMedGoogle Scholar
  59. 59.
    Puda A, Milosevic JD, Berg T et al (2012) Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am J Hematol 87:245–250CrossRefPubMedGoogle Scholar
  60. 60.
    Tartaglia M, Niemeyer CM, Fragale A et al (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34:148–150CrossRefPubMedGoogle Scholar
  61. 61.
    Bentires-Alj M, Paez JG, David FS et al (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820CrossRefPubMedGoogle Scholar
  62. 62.
    Hugues L, Cavé H, Philippe N et al (2005) Mutations of PTPN11 are rare in adult myeloid malignancies. Haematologica 90:853–854PubMedGoogle Scholar
  63. 63.
    Takiuchi Y, Maruoka H, Aoki K et al (2012) Leukemic manifestation of blastic plasmacytoid dendritic cell neoplasm lacking skin lesion: a borderline case between acute monocytic leukemia. J Clin Exp Hematop 52:107–111CrossRefPubMedGoogle Scholar
  64. 64.
    Tallman MS, Hakimian D, Shaw JM et al (1993) Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 11:690CrossRefPubMedGoogle Scholar
  65. 65.
    Novotny JR, Nückel H, Dührsen U (2006) Correlation between expression of CD56/NCAM and severe leukostasis in hyperleukocytic acute myelomonocytic leukaemia. Eur J Haematol 76:299–308CrossRefPubMedGoogle Scholar
  66. 66.
    Pagano L, Valentini CG, Pulsoni A et al (2013) Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica 98:239–246CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pagano L, Valentini CG, Grammatico S, Pulsoni A (2016) Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches. Br J Haematol 174:188–202CrossRefPubMedGoogle Scholar
  68. 68.
    Torlakovic EE, Brynes RK, Hyjek E et al (2015) ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int J Lab Hematol 37:431–449CrossRefPubMedGoogle Scholar
  69. 69.
    Nakamura Y, Kayano H, Kakegawa E et al (2015) Identification of SUPT3H as a novel 8q24/MYC partner in blastic plasmacytoid dendritic cell neoplasm with t(6;8)(p21;q24) translocation. Blood Cancer Journal 5:e301CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sapienza MR, Fuligni F, Agostinelli C et al (2014) Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia 28:1606–1616CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Arranto CA, Tzankov A, Halter J (2017) Blastic plasmacytoid dendritic cell neoplasm with transient response to pralatrexate. Ann Hematol. doi: 10.1007/s00277-016-2907-4 PubMedGoogle Scholar
  72. 72.
    Montero J, Stephansky J, Cai T et al (2016) Blastic plasmacytoid dendritic cell neoplasm is dependent on BCL2 and sensitive to venetoclax. Cancer Discov. doi: 10.1158/2159-8290.CD-16-0999 PubMedGoogle Scholar
  73. 73.
    Leroux D, Mugneret F, Callanan M et al (2002) CD4(+), CD56 (+) DC2 acute leukemia is characterized by recurrent clonal chromosomal changes affecting 6 major targets: a study of 21 cases by the Groupe Francais de Cytogenetique Hematologique. Blood 99:4154–4159CrossRefPubMedGoogle Scholar
  74. 74.
    Lucioni M, Novara F, Fiandrino G et al (2011) Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood 118:4591–4594CrossRefPubMedGoogle Scholar
  75. 75.
    Wiesner T, Obenauf AC, Cota C et al (2010) Alterations of the cell-cycle inhibitors p27(KIP1) and p16(INK4a) are frequent in blastic plasmacytoid dendritic cell neoplasms. J Invest Dermatol 130:1152–1157CrossRefPubMedGoogle Scholar
  76. 76.
    Cao Q, Liu F, Niu G, Xue L, Han A (2014) Blastic plasmacytoid dendritic cell neoplasm with EWSR1 gene rearrangement. J Clin Pathol 67:90–92CrossRefPubMedGoogle Scholar
  77. 77.
    Gao NA, Wang XX, Sun JR, Yu WZ, Guo NJ (2015) Blastic plasmacytoid dendritic cell neoplasm with leukemic manifestation and ETV6 gene rearrangement: a case report. Exp Ther Med 9:1109–1112PubMedPubMedCentralGoogle Scholar
  78. 78.
    Toya T, Nishimoto N, Koya J et al (2012) The first case of blastic plasmacytoid dendritic cell neoplasm with MLL-ENL rearrangement. Leuk Res 36:117–118CrossRefPubMedGoogle Scholar
  79. 79.
    Tokuda K, Eguchi-Ishimae M, Yagi C et al (2014) CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer 53:78–89CrossRefPubMedGoogle Scholar
  80. 80.
    Yang N, Huh J, Chung WS et al (2015) KMT2A (MLL)-MLLT1 rearrangement in blastic plasmacytoid dendritic cell neoplasm. Cancer Genet 208:464–467CrossRefPubMedGoogle Scholar
  81. 81.
    Cook JR, Shekhter-Levin S, Swerdlow SH (2004) Utility of routine classical cytogenetic studies in the evaluation of suspected lymphomas: results of 279 consecutive lymph node/extranodal tissue biopsies. Am J Clin Pathol 121:826–835CrossRefPubMedGoogle Scholar
  82. 82.
    Sreekantaiah C, Leong SPL, Karakousis CP et al (1991) Cytogenetic profiles of 109 lipomas. Cancer Res 51:422–433PubMedGoogle Scholar
  83. 83.
    Panagopoulos I, Mertens F, Isaksson M et al (2002) Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 35:340–352CrossRefPubMedGoogle Scholar
  84. 84.
    Dietrich CU, Krone W, Hochsattel R (1990) Cytogenetic studies in tuberous sclerosis. Cancer Genet Cytogenet 45:161–177CrossRefPubMedGoogle Scholar
  85. 85.
    Aspberg F, Mertens F, Bauer HC et al (1995) Near-haploidy in two malignant fibrous histiocytomas. Cancer Genet Cytogenet 79:119–122CrossRefPubMedGoogle Scholar
  86. 86.
    Fletcher CDM, Akerman M, Dal Cin P et al (1996) Correlation between clinicopathological features and karyotype in lipomatous tumors: a report of 178 cases from the chromosomes and morphology (CHAMP) collaborative study group. Am J Pathol 148:623–630PubMedPubMedCentralGoogle Scholar
  87. 87.
    Gisselsson D, Hibbard MK, Dal Cin P et al (2011) PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol 159:955–962CrossRefGoogle Scholar
  88. 88.
    Bergman D, Halje M, Nordin M, Engström W (2013) Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology 59:240–249CrossRefPubMedGoogle Scholar
  89. 89.
    Alayed K, Patel KP, Konoplev S et al (2013) TET2 mutations, myelodysplastic features, and a distinct immunoprofile characterize blastic plasmacytoid dendritic cell neoplasm in the bone marrow. Am J Hematol 88:1055–1061CrossRefPubMedGoogle Scholar
  90. 90.
    Jardin F, Ruminy P, Parmentier F et al (2011) TET2 and TP53 mutations are frequently observed in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol 153:413–416CrossRefPubMedGoogle Scholar
  91. 91.
    Stenzinger A, Endris V, Pfarr N et al (2014) Targeted ultradeep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget 5:6404–6413CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Menezes J, Acquadro F, Wiseman M et al (2014) Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia 28:823–829CrossRefPubMedGoogle Scholar
  93. 93.
    Schulze K, Imbeaud S, Letouzé E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47:505–511CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kastner P, Chan S (2011) Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2:108–114CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mullighan CG, Miller CB, Radtke I (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–114CrossRefPubMedGoogle Scholar
  96. 96.
    Trageser D, Iacobucci I, Nahar R et al (2009) Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J Exp Med 206:1739–1753CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Iacobucci I, Storlazzi CT, Cilloni D et al (2009) Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114:2159–2167CrossRefPubMedGoogle Scholar
  98. 98.
    Holmfeldt L, Wei L, Diaz-Flores E et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45:242–252CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of PathologyUniversity of BaselBaselSwitzerland
  2. 2.Department of PathologyRadboud University Medical CenterNijmegenNetherlands
  3. 3.Pathology, Städtisches Klinikum MünchenMunichGermany
  4. 4.Department of PathologyUniversity Medical Center UtrechtUtrechtNetherlands
  5. 5.Division of Hematopathology, Department of Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew YorkUSA
  6. 6.Department of HistopathologyGuy’s and St Thomas’ HospitalLondonUK
  7. 7.Pathology Unit, Department of Pathophysiology and TransplantationUniversity of Milan and Fondazione IRCCSMilanItaly

Personalised recommendations