Annals of Hematology

, Volume 96, Issue 5, pp 817–827 | Cite as

Haploidentical hematopoietic cell transplantation using in vitro T cell depleted grafts as salvage therapy in patients with disease relapse after prior allogeneic transplantation

  • Sebastian P. Haen
  • Christiane Groh
  • Michael Schumm
  • Linus Backert
  • Markus W. Löffler
  • Birgit Federmann
  • Christoph Faul
  • Daniela Dörfel
  • Wichard Vogel
  • Rupert Handgretinger
  • Lothar Kanz
  • Wolfgang A. Bethge
Original Article

Abstract

Disease relapse after one or more allogeneic hematopoietic cell transplantations (HCT) represents a therapeutic challenge with all options bearing a significant morbidity and mortality. Haploidentical HCT may induce more pronounced anti-leukemic effects and was evaluated at our center in 25 consecutive patients with disease relapse after preceding HCT receiving haploidentical grafts after in vitro T cell depletion. Overall survival at 1 and 2 years was 32 and 14%, respectively. Of note, patients with complete remission (CR) before haploidentical HCT had a very favorable overall survival of 41.7% at 2 years. Cumulative incidence of non-relapse mortality was 36 and 40% at 1 and 2 years, respectively. With a cumulative incidence for relapse of 36 and 45.6% at 1 and 2 years, disease-free survival (DFS) was 28 and 14.4%, respectively. Here also, patients with CR before haploidentical HCT had a favorable DFS of 42% at 2 years. Only very limited acute (11 patients (44%) with a median grade 1) and chronic graft versus host disease (GvHD) (5 patients (11%), limited grade only) was observed. The main complications and causes of death comprised—besides relapse—infections and bleeding complications. Hence, haploidentical HCT can achieve long-term survival comparable to second transplantation with matched or mismatched donors for patients with otherwise deleterious prognosis and should be considered as a treatment option for patients experiencing disease relapse after previous allogeneic HCT.

Keywords

Haploidentical hematopoietic cell transplantation Relapse Graft versus host disease Salvage therapy 

Notes

Acknowledgements

The authors wish to thank Mirjam Breig, Anja Junker, and Diana Kilian for assistance in data collection and database maintenance. We would also like to thank the staff of the stem cell laboratory of the University Hospital of Tübingen, especially Stefanie Ackermann and Gabriele Hochwelker. Moreover, the authors wish to thank the physicians and nursing staff of the transplantation ward and the outpatient clinic for participating in patient care, and Prof. Dr. Peter Martus (Institute for clinical Epidemiology and applied Biometry, University Tuebingen) for statistical advice.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Funding

Sebastian Haen was supported by the German José Carreras Leukemia Foundation (Project-No. DJS 08-04). Part of this work has been supported by an institutional grant (AKF 151-0-0) of the University of Tuebingen.

Research involving human participants

This retrospective analysis was reviewed and approved by the institutional ethics committee of the medical faculty and university hospital Tübingen.

Informed consent

Due to the retrospective nature of this analysis, no informed content was obtained from the patients.

Supplementary material

277_2017_2941_MOESM1_ESM.jpg (1.3 mb)
Supplementary Fig. 1 (JPEG 1361 kb)
277_2017_2941_MOESM2_ESM.docx (36 kb)
Supplementary Table 1 (DOCX 36 kb)
277_2017_2941_MOESM3_ESM.docx (15 kb)
Supplementary Table 2 (DOCX 15 kb)
277_2017_2941_MOESM4_ESM.docx (20 kb)
Supplementary Table 3 (DOCX 20 kb)
277_2017_2941_MOESM5_ESM.docx (25 kb)
Supplementary Table 4 (DOCX 24 kb)

References

  1. 1.
    Messori A, Bosi A, Bacci S, Laszlo D et al (1999) Retrospective survival analysis and cost-effectiveness evaluation of second allogeneic bone marrow transplantation in patients with acute leukemia. Gruppo Italiano Trapianto di Midollo Osseo. Bone Marrow Transplant 23:489–495CrossRefPubMedGoogle Scholar
  2. 2.
    Porter DL, Alyea EP, Antin JH, DeLima M et al (2010) NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 16:1467–1503CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arfons LM, Tomblyn M, Rocha V, Lazarus HM (2009) Second hematopoietic stem cell transplantation in myeloid malignancies. Curr Opin Hematol 16:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baron F, Storb R, Storer BE, Maris MB et al (2006) Factors associated with outcomes in allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning after failed myeloablative hematopoietic cell transplantation. J Clin Oncol 24:4150–4157CrossRefPubMedGoogle Scholar
  5. 5.
    Bosi A, Laszlo D, Labopin M, Reffeirs J et al (2001) Second allogeneic bone marrow transplantation in acute leukemia: results of a survey by the European cooperative Group for Blood and Marrow Transplantation. J Clin Oncol 19:3675–3684CrossRefPubMedGoogle Scholar
  6. 6.
    Michallet M, Tanguy ML, Socie G, Thiebaut A et al (2000) Second allogeneic haematopoietic stem cell transplantation in relapsed acute and chronic leukaemias for patients who underwent a first allogeneic bone marrow transplantation: a survey of the Societe Francaise de Greffe de moelle (SFGM). Br J Haematol 108:400–407CrossRefPubMedGoogle Scholar
  7. 7.
    Platzbecker U, Binder M, Schmid C, Rutt C et al (2008) Second donation of hematopoietic stem cells from unrelated donors for patients with relapse or graft failure after allogeneic transplantation. Haematologica 93:1276–1278CrossRefPubMedGoogle Scholar
  8. 8.
    Christopeit M, Kuss O, Finke J, Bacher U et al (2013) Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol 31:3259–3271CrossRefPubMedGoogle Scholar
  9. 9.
    Petrovic A, Hale G (2011) Clinical options after failure of allogeneic hematopoietic stem cell transplantation in patients with hematologic malignancies. Expert Rev Clin Immunol 7:515–525CrossRefPubMedGoogle Scholar
  10. 10.
    de Lima M, Porter DL, Battiwalla M, Bishop MR et al (2014) Proceedings from the National Cancer Institute’s second international workshop on the biology, prevention, and treatment of relapse after hematopoietic stem cell transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant 20:4–13CrossRefPubMedGoogle Scholar
  11. 11.
    Federmann B, Bornhauser M, Meisner C, Kordelas L et al (2012) Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica 97:1523–1531CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kanakry CG, Fuchs EJ, Luznik L (2016) Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol 13:10–24CrossRefPubMedGoogle Scholar
  13. 13.
    Huang XJ, Zhu HH, Chang YJ, Xu LP et al (2012) The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate- or high-risk acute myeloid leukemia in first complete remission. Blood 119:5584–5590CrossRefPubMedGoogle Scholar
  14. 14.
    Kanda J, Long GD, Gasparetto C, Horwitz ME et al. (2013) Reduced-intensity allogeneic transplantation using alemtuzumab from HLA-matched related, unrelated, or haploidentical related donors for patients with hematologic malignancies. Biol Blood Marrow TransplantGoogle Scholar
  15. 15.
    Gao L, Wen Q, Chen X, Liu Y et al (2014) Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in Southwest China. Biol Blood Marrow Transplant 20:1932–1939CrossRefPubMedGoogle Scholar
  16. 16.
    Sorror ML, Maris MB, Storb R, Baron F et al (2005) Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106:2912–2919CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Versluis J, Labopin M, Niederwieser D, Socie G et al (2015) Prediction of non-relapse mortality in recipients of reduced intensity conditioning allogeneic stem cell transplantation with AML in first complete remission. Leukemia 29:51–57CrossRefPubMedGoogle Scholar
  18. 18.
    Armand P, Gibson CJ, Cutler C, Ho VT et al (2012) A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood 120:905–913CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bacigalupo A, Ballen K, Rizzo D, Giralt S et al (2009) Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant 15:1628–1633CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Glucksberg H, Storb R, Fefer A, Buckner CD et al (1974) Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 18:295–304CrossRefPubMedGoogle Scholar
  21. 21.
    Lee SJ, Vogelsang G, Flowers ME (2003) Chronic graft-versus-host disease. Biol Blood Marrow Transplant 9:215–233CrossRefPubMedGoogle Scholar
  22. 22.
    Bader P, Beck J, Frey A, Schlegel PG et al (1998) Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 21:487–495CrossRefPubMedGoogle Scholar
  23. 23.
    Haen SP, Schumm M, Faul C, Kanz L et al (2015) Poor graft function can be durably and safely improved by CD34+-selected stem cell boosts after allogeneic unrelated matched or mismatched hematopoietic cell transplantation. J Cancer Res Clin Oncol 141:2241–2251CrossRefPubMedGoogle Scholar
  24. 24.
    Scrucca L, Santucci A, Aversa F (2010) Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplant 45:1388–1395CrossRefPubMedGoogle Scholar
  25. 25.
    Slavin S, Nagler A, Naparstek E, Kapelushnik Y et al (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91:756–763PubMedGoogle Scholar
  26. 26.
    Schmid C, Labopin M, Nagler A, Niederwieser D et al (2012) Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood 119:1599–1606CrossRefPubMedGoogle Scholar
  27. 27.
    Pollyea DA, Artz AS, Stock W, Daugherty C et al (2007) Outcomes of patients with AML and MDS who relapse or progress after reduced intensity allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 40:1027–1032CrossRefPubMedGoogle Scholar
  28. 28.
    Pawson R, Potter MN, Theocharous P, Lawler M et al (2001) Treatment of relapse after allogeneic bone marrow transplantation with reduced intensity conditioning (FLAG +/− Ida) and second allogeneic stem cell transplant. Br J Haematol 115:622–629CrossRefPubMedGoogle Scholar
  29. 29.
    Eapen M, Giralt SA, Horowitz MM, Klein JP et al (2004) Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant 34:721–727CrossRefPubMedGoogle Scholar
  30. 30.
    Shaw BE, Mufti GJ, Mackinnon S, Cavenagh JD et al (2008) Outcome of second allogeneic transplants using reduced-intensity conditioning following relapse of haematological malignancy after an initial allogeneic transplant. Bone Marrow Transplant 42:783–789CrossRefPubMedGoogle Scholar
  31. 31.
    Duus JE, Stiff PJ, Choi J, Parthasarathy M et al (2005) Second allografts for relapsed hematologic malignancies: feasibility of using a different donor. Bone Marrow Transplant 35:261–264CrossRefPubMedGoogle Scholar
  32. 32.
    Tischer J, Engel N, Fritsch S, Prevalsek D et al (2014) Second haematopoietic SCT using HLA-haploidentical donors in patients with relapse of acute leukaemia after a first allogeneic transplantation. Bone Marrow Transplant 49:895–901CrossRefPubMedGoogle Scholar
  33. 33.
    Radich JP, Sanders JE, Buckner CD, Martin PJ et al (1993) Second allogeneic marrow transplantation for patients with recurrent leukemia after initial transplant with total-body irradiation-containing regimens. J Clin Oncol 11:304–313CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sebastian P. Haen
    • 1
    • 2
  • Christiane Groh
    • 1
  • Michael Schumm
    • 3
  • Linus Backert
    • 2
    • 4
  • Markus W. Löffler
    • 2
    • 5
  • Birgit Federmann
    • 1
    • 6
  • Christoph Faul
    • 1
  • Daniela Dörfel
    • 1
  • Wichard Vogel
    • 1
  • Rupert Handgretinger
    • 3
  • Lothar Kanz
    • 1
  • Wolfgang A. Bethge
    • 1
  1. 1.Medizinische Klinik II für Onkologie, Hämatologie, Immunologie, Rheumatologie und PulmologieUniversitätsklinikum TübingenTübingenGermany
  2. 2.Interfakultäres Institut für Zellbiologie, Abteilung ImmunologieTübingenGermany
  3. 3.Universitätsklinik für Kinder- und Jugendmedizin, Abteilung I für Allgemeine Pädiatrie, Hämatologie und OnkologieTübingenGermany
  4. 4.Eberhard Karls-Universität Tübingen, Applied Bioinformatics GroupTübingenGermany
  5. 5.Universitätsklinik für Allgemeine, Viszeral- und TransplantationschirurgieTübingenGermany
  6. 6.Institut für Allgemeine Pathologie und Pathologische AnatomieTübingenGermany

Personalised recommendations