Surgical and Radiologic Anatomy

, Volume 40, Issue 7, pp 757–767 | Cite as

Contrast opacification difference of mural artery and the transluminal attenuation gradient on coronary computed tomography angiography for detection of systolic compression of myocardial bridge

  • Yuanliang Xie
  • Xiang Wang
  • Wei Xie
  • Faxiang Chen
  • Shubo Gao
  • Yikai Xu
Original Article



Myocardial bridges (MB) have traditionally been considered a benign condition, but recent studies have demonstrated that the clinical complications can be dangerous. The transluminal attenuation gradient (TAG) obtained from coronary computed tomography angiography (CCTA) data (Retrospective ECG-triggered method) has been used in detecting significant stenosis in coronary artery caused by atherosclerosis. Contrast opacification difference (COD) was the parameters calculated as the change between attenuation of mural artery and the median attenuation of presumptive vessel segment; it was evaluated along with TAGstandardized (TAGs) and MB length for predicting MB with systolic compression (MB-SC) in patients diagnosed as MB in left anterior descending coronary artery (LAD) by CCTA or invasive coronary angiograph (ICA).


A total of 107 MB patients were divided into three groups based on systolic compression (SC), including: Group 1 (MB without SC); Group 2 (MB with mild SC); and Group 3 (MB with significant SC). ANOVA and Kruskal–Wallis analysis indicated TAGs showed the most significant differences for MB identification.


This study revealed that TAGs decreasing and COD increasing were dominated in MB with significant SC.


COD had a higher sensitivity and a higher negative predictive value for detecting MB with significant SC than TAGs.


Myocardial bridge Contrast opacification difference Transluminal attenuation gradient Left anterior descending coronary artery Myocardial bridge with systolic compression 




Author contributions

Guarantor of integrity of the entire study: YX. Study concepts: XW. Study design: YX. Definition of intellectual content: WX. Literature research: XW. Clinical studies: YX. Experimental studies: WX, FC. Data acquisition: SG, FC. Data analysis: SG. Statistical analysis: YX. Manuscript preparation: YX. Manuscript editing: YX. Manuscript review: YX.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no any conflict of interest.


  1. 1.
    Geiringer E (1951) The mural coronary. Am Heart J 41(3):359–368CrossRefPubMedGoogle Scholar
  2. 2.
    Ko BS, Seneviratne S, Cameron JD et al (2016) Rest and stress transluminal attenuation gradient and contrast opacification difference for detection of hemodynamically significant stenoses in patients with suspected coronary artery disease. Int J Cardiovasc Imaging 32(7):1131–1141CrossRefPubMedGoogle Scholar
  3. 3.
    Rossi L, Dander B, Nidasio GP et al (1980) Myocardial bridges and ischemic heart disease. Eur Heart J 1:239–245CrossRefPubMedGoogle Scholar
  4. 4.
    Gowda RM, Khan IA, Ansari AW, Cohen RA (2003) Acute ST segment elevation myocardial infarction from myocardial bridging of left anterior descending coronary artery. Int J Cardiol 90(1):117–118CrossRefPubMedGoogle Scholar
  5. 5.
    Yano K, Yoshino H, Taniuchi M et al (2001) Myocardial bridging of the left anterior descending coronary artery in acute inferior wall myocardial infarction. Clin Cardiol 24(3):202–208CrossRefPubMedGoogle Scholar
  6. 6.
    Stuijfzand WJ, Danad I, Raijmakers PG et al (2014) Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. JACC Cardiovasc Imaging 7(4):374–386CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Teragawa H, Fukuda Y, Matsuda K et al (2003) Myocardial bridging increases the risk of coronary spasm. Clin Cardiol 26(8):377–383CrossRefPubMedGoogle Scholar
  8. 8.
    Tio RA, Ebels T (2001) Ventricular septal rupture caused by myocardial bridging. Ann Thorac Surg 72:1369–1370CrossRefPubMedGoogle Scholar
  9. 9.
    Feld H, Guadanino V, Hollander G, Greengart A, Lichstein E, Shani J (1991) Exercise-induced ventricular tachycardia in association with a myocardial bridge. Chest 99:1295–1296CrossRefPubMedGoogle Scholar
  10. 10.
    Migliore F, Maffei E, Perazzolo Marra M et al (2013) LAD coronary artery myocardial bridging and apical ballooning syndrome. JACC Cardiovasc Imaging 6(1):32–41CrossRefPubMedGoogle Scholar
  11. 11.
    Galli M, Politi A, Zerboni S (1997) “Functional myocardial bridging” and “hyperkinetic state”: a rare association as a cause of acute myocardial infarction”. G Ital Cardiol 27:1286–1289PubMedGoogle Scholar
  12. 12.
    Cutler D, Wallace JM (1997) Myocardial bridging in a young patient with sudden death. Clin Cardiol 20:581–583CrossRefPubMedGoogle Scholar
  13. 13.
    Jacobs JE, Bod J, Kim DC, Hecht EM, Srichai MB (2008) Myocardial bridging: evaluation using single- and dual-source multidetector cardiac computed tomographic angiography. J Comput Assist Tomogr 32(2):242–246CrossRefPubMedGoogle Scholar
  14. 14.
    Lu GM, Zhang LJ, Guo H et al (2008) Comparison of myocardial bridging by dual-source CT with conventional coronary angiography. Circ J 72(7):1079–1085CrossRefPubMedGoogle Scholar
  15. 15.
    Leschka S, Koepfli P, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography—comparison with conventional coronary angiography. Radiology 246(3):754–762CrossRefPubMedGoogle Scholar
  16. 16.
    Tio RA, Van Gelder IC, Boonstra PW, Crijns HJ (1997) Myocardial bridging in a survivor of sudden cardiac near-death: role of intracoronary doppler flow measurements and angiography during dobutamine stress in the clinical evaluation. Heart 77(3):280–282CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    La Grutta L, Runza G, Lo Re G et al (2009) Prevalence of myocardial bridging and correlation with coronary atherosclerosis studied with 64-slice CT coronary angiography. Radiol Med 114(7):1024–1036CrossRefPubMedGoogle Scholar
  18. 18.
    Liu SH, Yang Q, Chen JH, Wang XM, Wang M, Liu C (2010) Myocardial bridging on dual-source computed tomography: degree of systolic compression of mural coronary artery correlating with length and depth of the myocardial bridge. Clin Imaging 34(2):83–88CrossRefPubMedGoogle Scholar
  19. 19.
    Jeong YH, Kang MK, Park SR et al (2010) A head-to-head comparison between 64-slice multidetector computed tomographic and conventional coronary angiographies in measurement of myocardial bridge. Int J Cardiol 143(3):243–248CrossRefPubMedGoogle Scholar
  20. 20.
    Ding H, Shang K, Chen Z et al (2010) A haemodynamic model for heart-mural coronary artery-myocardial bridge. J Med Eng Technol 34(1):29–34CrossRefPubMedGoogle Scholar
  21. 21.
    Choi JH, Min JK, Labounty TM et al (2011) Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging 4(11):1149–1157CrossRefPubMedGoogle Scholar
  22. 22.
    Tsujita K, Maehara A, Mintz GS et al (2008) Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol 102(12):1608–1613CrossRefPubMedGoogle Scholar
  23. 23.
    Zheng M, Wei M, Wen D et al (2015) Transluminal attenuation gradient in coronary computed tomography angiography for determining stenosis severity of calcified coronary artery: a primary study with dual-source CT. Eur Radiol 25(5):1219–1228CrossRefPubMedGoogle Scholar
  24. 24.
    Bourassa MG, Butnaru A, Lesperance J, Tardif JC (2003) Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol 41(3):351–359CrossRefPubMedGoogle Scholar
  25. 25.
    Ferreira AG Jr, Trotter SE, Konig B, Decourt LV, Fox K, Olsen EG (1991) Myocardial bridges: morphological and functional aspects. Br Heart J 66:364–367CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Polacek P, Kralove H (1961) Relation of myocardial bridges and loops on the coronary arteries to coronary occlusions. Am Heart J 61:44–52CrossRefPubMedGoogle Scholar
  27. 27.
    Mohlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106:2616–2622CrossRefPubMedGoogle Scholar
  28. 28.
    Angelini P, Tivellato M, Donis J, Leachman RD (1983) Myocardial bridges: a review. Prog Cardiovasc Dis 26:75–88CrossRefPubMedGoogle Scholar
  29. 29.
    Giampalmo A, Bronzini E, Bandini T. Sulla (1964) minor compromissione aterosclerotica delle arterie coronarie quando siano (per variante anatomica) in situazione intramiocardica. Giornale Ital Arterioscl 2:1–14Google Scholar
  30. 30.
    Marcus JT, Smeenk HG, Juijer JP et al (9999) Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr 23:567–576CrossRefGoogle Scholar
  31. 31.
    Li Y, Yu M, Zhang J, Li M, Lu Z, Wei M (2017) Non-invasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression. Eur Radiol 27(5):1971–1979CrossRefPubMedGoogle Scholar
  32. 32.
    Wong DT, Ko BS, Cameron JD et al (2014) Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol 63(18):1904–1912CrossRefPubMedGoogle Scholar
  33. 33.
    Wong DT, Ko BS, Cameron JD et al (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61(12):1271–1279CrossRefPubMedGoogle Scholar
  34. 34.
    Yoon YE, Choi JH, Kim JH et al (2012) Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. JACC Cardiovasc Imaging 5(11):1088–1096CrossRefPubMedGoogle Scholar
  35. 35.
    Chatzizisis YS, George E, Cai T et al (2014) Accuracy and reproducibility of automated, standardized coronary transluminal attenuation gradient measurements. Int J Cardiovasc Imaging 30(6):1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ko SM, Kim KS (2007) Multidetector-row CT coronary angiographic finding of myocardial bridging. Br J Radiol 80(957):e196–e200CrossRefPubMedGoogle Scholar
  37. 37.
    Park EA, Lee W, Park SJ, Kim YK, Hwang HY (2016) Influence of coronary artery diameter on intracoronary transluminal attenuation gradient During CT angiography. JACC Cardiovasc Imaging 9(9):1074–1083CrossRefPubMedGoogle Scholar
  38. 38.
    Einstein AJ (2013) TAG-is it?: improving coronary computed tomography angiography with the isotemporal transluminal contrast attenuation gradient. J Am Coll Cardiol 61(12):1280–1282CrossRefPubMedGoogle Scholar
  39. 39.
    Nakanishi R, Matsumoto S, Alani A et al (2015) Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Int J Cardiovasc Imaging 31(6):1251–1259CrossRefPubMedGoogle Scholar
  40. 40.
    Rybicki JR, Juan YH, Saboo SS, George E, Bhivasankar R, Mitsouras D (2014) Patterns of opacification in coronary CT angiography: contrast differences and gradients. Curr Cardiovasc Imaging Rep 7(10):9291CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yamada R, Tremmel JA, Tanaka S et al (2016) Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. JHAH 5(4): e001735Google Scholar
  42. 42.
    Arjmand Shabestari A, Azma R, Nourmohammad A, Shakiba M (2016) Systolic compression of a myocardial bridged coronary artery and its morphologic characteristics: a combination study of computed tomography angiography and invasive angiography. Iran J Radiol 13(4):e31647CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shabestari AA, Akhlaghpoor S, Tayebivaljozi R, Fattahi Masrour F (2012) Prevalence of congenital coronary artery anomalies and variants in 2697 consecutive patients using 64-detector row coronary CT angiography. Iran J Radiol 9(3):111–121CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Yuanliang Xie
    • 1
    • 2
  • Xiang Wang
    • 1
  • Wei Xie
    • 1
  • Faxiang Chen
    • 1
  • Shubo Gao
    • 1
  • Yikai Xu
    • 2
  1. 1.Department of Radiology, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations