Skip to main content
Log in

Performance Comparison of Augmented Reality Versus Ultrasound Guidance for Puncture: A Phantom Study

  • Laboratory Investigation
  • Non-Vascular Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Augmented reality (AR) is an innovative approach that could assist percutaneous procedures; by directly seeing “through” a phantom, targeting a lesion might be more intuitive than using ultrasound (US). The objective of this study was to compare the performance of experienced interventional radiologists and operators untrained in soft tissue lesion puncture using AR guidance and standard US guidance.

Material and Methods

Three trained interventional radiologists with 5–10 years of experience and three untrained operators performed punctures of five targets in an abdominal phantom, with US guidance and AR guidance. Correct targeting, accuracy (defined as the Euclidean distance between the tip and the center of the target), planning time, and puncture time were documented.

Results

Accuracy was higher for the trained group than the untrained group using US guidance (1 mm versus 4 mm, p = 0.001), but not when using AR guidance (4 mm vs. 4 mm, p = 0.76). All operators combined, no significant difference was found concerning accuracy between US and AR guidance (2 mm vs. 4 mm, p = 0.09), but planning time and puncture time were significantly shorter using AR (respectively, 15.1 s vs. 74 s, p < 0.001; 16.1 s vs. 59 s; p < 0.001).

Conclusion

Untrained and trained operators obtained comparable accuracy in percutaneous punctures when using AR guidance whereas US performance was better in the experienced group. All operators together, accuracy was similar between US and AR guidance, but shorter planning time, puncture time were found for AR guidance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AR:

Augmented reality

CT:

Computed tomography

US:

Ultrasound

References

  1. Alexander LF, McComb BL, Bowman AW, Bonnett SL, Ghazanfari SM, Caserta MP. Ultrasound simulation training for radiology residents—curriculum design and implementation. J Ultrasound Med. 2023;42:777–90. https://doi.org/10.1002/jum.16098.

    Article  PubMed  Google Scholar 

  2. Fatima H, Mahmood F, Mufarrih SH, Mitchell JD, Wong V, Amir R, et al. Preclinical proficiency-based model of ultrasound training. Anesth Analg. 2022;134:178–87. https://doi.org/10.1213/ANE.0000000000005510.

    Article  PubMed  Google Scholar 

  3. Rankin JH, Elkhunovich MA, Rangarajan V, Chilstrom M, Mailhot T. Learning curves for ultrasound assessment of lumbar puncture insertion sites: when is competency established? J Emerg Med. 2016;51:55–62. https://doi.org/10.1016/j.jemermed.2016.03.025.

    Article  PubMed  Google Scholar 

  4. Härle P, Bester J, Hillebrand M, Hartung W. Ultrasound-guided puncture: an inexpensive and effective learning model. Z Rheumatol. 2011;70:525–9. https://doi.org/10.1007/s00393-011-0839-x.

    Article  PubMed  Google Scholar 

  5. Liu Y, Glass NL, Glover CD, Power RW, Watcha MF. Comparison of the development of performance skills in ultrasound-guided regional anesthesia simulations with different phantom models. Simul Healthc. 2013;8:368–75. https://doi.org/10.1097/SIH.0b013e318299dae2.

    Article  PubMed  Google Scholar 

  6. Dabadie A, Soussan J, Mancini J, Vidal V, Bartoli JM, Gorincour G, et al. Development and initial evaluation of a training program for peripherally inserted central catheter (PICC) placement for radiology residents and technicians. Diagn Interv Imaging. 2016;97:877–82. https://doi.org/10.1016/j.diii.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  7. De Fiori E, Rampinelli C, Turco F, Bonello L, Bellomi M. Role of operator experience in ultrasound-guided fine-needle aspiration biopsy of the thyroid. Radiol Med. 2010;115:612–8. https://doi.org/10.1007/s11547-010-0528-x.

    Article  PubMed  Google Scholar 

  8. Zammit C, Calleja-Agius J, Azzopardi E. Augmented reality for teaching anatomy. Clin Anat. 2022;35:824–7. https://doi.org/10.1002/ca.23920.

    Article  PubMed  Google Scholar 

  9. Barral M, Razakamanantsoa L, Cornelis FH. How to further train medical students in Interventional radiology? Diagn Interv Imaging. 2021;102:9–10. https://doi.org/10.1016/j.diii.2020.11.014.

    Article  PubMed  Google Scholar 

  10. Shuhaiber JH. Augmented reality in surgery. Arch Surg. 2004;139:170–4. https://doi.org/10.1001/archsurg.139.2.170.

    Article  PubMed  Google Scholar 

  11. Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot. 2020;16:e2067. https://doi.org/10.1002/rcs.2067.

    Article  PubMed  Google Scholar 

  12. Park BJ, Hunt SJ, Martin C, Nadolski GJ, Wood BJ, Gade TP. Augmented and Mixed reality: technologies for enhancing the future of IR. J Vasc Interv Radiol. 2020;31:1074–82. https://doi.org/10.1016/j.jvir.2019.09.020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sparwasser P, Haack M, Epple S, Frey L, Zeymer S, Dotzauer R, et al. Smartglass augmented reality-assisted targeted prostate biopsy using cognitive point-of-care fusion technology. Int J Med Robot. 2022;18:e2366. https://doi.org/10.1002/rcs.2366.

    Article  PubMed  Google Scholar 

  14. Pfefferle M, Shahub S, Shahedi M, Gahan J, Johnson B, Le P, et al. Renal biopsy under augmented reality guidance. Proc SPIE Int Soc Opt Eng. 2020;11315:113152W. https://doi.org/10.1117/12.2550593.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Costa N, Ferreira L, de Araújo ARVF, Oliveira B, Torres HR, Morais P, et al. Augmented reality-assisted ultrasound breast biopsy. Sensors (Basel). 2023;23:1838. https://doi.org/10.3390/s23041838.

    Article  PubMed  Google Scholar 

  16. Fritz J, Paweena U, Ungi T, Flammang AJ, McCarthy EF, Fichtinger G, et al. Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol. 2013;48:464–70. https://doi.org/10.1097/RLI.0b013e31827b9f86.

    Article  PubMed  Google Scholar 

  17. Gadodia G, Yanof J, Hanlon A, Bustos S, Weunski C, West K, et al. Early clinical feasibility evaluation of an augmented reality platform for guidance and navigation during percutaneous tumor ablation. J Vasc Interv Radiol. 2022;33:333–8. https://doi.org/10.1016/j.jvir.2021.11.014.

    Article  PubMed  Google Scholar 

  18. Nicolau SA, Pennec X, Soler L, Buy X, Gangi A, Ayache N, et al. An augmented reality system for liver thermal ablation: design and evaluation on clinical cases. Med Image Anal. 2009;13:494–506. https://doi.org/10.1016/j.media.2009.02.003.

    Article  CAS  PubMed  Google Scholar 

  19. Solbiati M, Ierace T, Muglia R, Pedicini V, Iezzi R, Passera KM, et al. Thermal ablation of liver tumors guided by augmented reality: an initial clinical experience. Cancers (Basel). 2022;14:1312. https://doi.org/10.3390/cancers14051312.

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Zhu J, Sze DY, Cui L, Li X, Bai Y, et al. Feasibility of augmented reality-guided transjugular intrahepatic portosystemic shunt. J Vasc Interv Radiol. 2020;31:2098–103. https://doi.org/10.1016/j.jvir.2020.07.025.

    Article  PubMed  Google Scholar 

  21. Li M, Seifabadi R, Long D, De Ruiter Q, Varble N, Hecht R, et al. Smartphone- versus smartglasses-based augmented reality (AR) for percutaneous needle interventions: system accuracy and feasibility study. Int J Comput Assist Radiol Surg. 2020;15:1921–30. https://doi.org/10.1007/s11548-020-02235-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Long DJ, Li M, De Ruiter QMB, Hecht R, Li X, Varble N, et al. Comparison of smartphone augmented reality, smartglasses augmented reality, and 3D CBCT-guided fluoroscopy navigation for percutaneous needle insertion: a phantom study. Cardiovasc Intervent Radiol. 2021;44:774–81. https://doi.org/10.1007/s00270-020-02760-7.

    Article  PubMed  Google Scholar 

  23. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barat M, Jannot A-S, Dohan A, Soyer P. How to report and compare quantitative variables in a radiology article. Diagn Interv Imaging. 2022;103:571–3. https://doi.org/10.1016/j.diii.2022.09.007.

    Article  PubMed  Google Scholar 

  25. Schullian P, Laimer G, Johnston E, Putzer D, Eberle G, Widmann G, et al. Reliability of stereotactic radiofrequency ablation (SRFA) for malignant liver tumors: novice versus experienced operators. Biology (Basel). 2023;12:175. https://doi.org/10.3390/biology12020175.

    Article  PubMed  Google Scholar 

  26. Uppot RN, Laguna B, McCarthy CJ, De Novi G, Phelps A, Siegel E, et al. Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care. Radiology. 2019;291:570–80. https://doi.org/10.1148/radiol.2019182210.

    Article  PubMed  Google Scholar 

  27. Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83. https://doi.org/10.1007/s00464-016-4800-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg. 2017;44:179–87. https://doi.org/10.5999/aps.2017.44.3.179.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buchs NC, Volonte F, Pugin F, Toso C, Fusaglia M, Gavaghan K, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184:825–31. https://doi.org/10.1016/j.jss.2013.04.032.

    Article  PubMed  Google Scholar 

  30. Perkins SL, Lin MA, Srinivasan S, Wheeler AJ, Hargreaves BA, Daniel BL (2017) A mixed-reality system for breast surgical planning. In: 2017 IEEE International symposium on mixed and augmented reality (ISMAR-Adjunct), pp. 269–74. https://doi.org/10.1109/ISMAR-Adjunct.2017.92

  31. Mohammed MAA, Khalaf MH, Kesselman A, Wang DS, Kothary N. A role for virtual reality in planning endovascular procedures. J Vasc Interv Radiol. 2018;29:971–4. https://doi.org/10.1016/j.jvir.2018.02.018.

    Article  PubMed  Google Scholar 

  32. Solbiati LA. Augmented reality: thrilling future for interventional oncology? Cardiovasc Intervent Radiol. 2021;44:782–3. https://doi.org/10.1007/s00270-021-02801-9.

    Article  PubMed  Google Scholar 

  33. Farshad-Amacker NA, Kubik-Huch RA, Kolling C, Leo C, Goldhahn J. Learning how to perform ultrasound-guided interventions with and without augmented reality visualization: a randomized study. Eur Radiol. 2022. https://doi.org/10.1007/s00330-022-09220-5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mahmood F, Mahmood E, Dorfman RG, Mitchell J, Mahmood F-U, Jones SB, et al. Augmented reality and ultrasound education: initial experience. J Cardiothorac Vasc Anesth. 2018;32:1363–7. https://doi.org/10.1053/j.jvca.2017.12.006.

    Article  PubMed  Google Scholar 

  35. Chalhoub J, Ayer SK, Ariaratnam ST. Augmented reality for enabling un and under trained individuals to complete specialty construction tasks. J Inf Technol Constr (ITcon). 2021. https://doi.org/10.36680/j.itcon.2021.008.

    Article  Google Scholar 

  36. Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, et al. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8:891–4. https://doi.org/10.5312/wjo.v8.i12.891.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ghaednia H, Fourman MS, Lans A, Detels K, Dijkstra H, Lloyd S, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J. 2021;21:1617–25. https://doi.org/10.1016/j.spinee.2021.03.018.

    Article  PubMed  Google Scholar 

Download references

Funding

L.S. was supported by Institut Servier research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Saccenti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

For this type of study consent for publication is not required.

Informed Consent

For this type of study informed consent is not required.

Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccenti, L., Bessy, H., Ben Jedidia, B. et al. Performance Comparison of Augmented Reality Versus Ultrasound Guidance for Puncture: A Phantom Study. Cardiovasc Intervent Radiol (2024). https://doi.org/10.1007/s00270-024-03727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00270-024-03727-8

Keywords

Navigation