Skip to main content
Log in

Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The therapeutic options in the treatment of cancer therapy have been recently significantly increased with systemic immune-targeted therapies. Novel immunotherapy approaches based on immune checkpoint blockade or engineered cytotoxic T lymphocytes have reached late-stage clinical development, with highly encouraging results. The success of cancer immunotherapy has generated a tremendous interest in further developing and exploring these strategies in combination with other approaches such as radiotherapy and local ablative therapies in oncology. The goal of this review is to discuss current approaches in immunotherapy and provide simple and constructive explanations on their mechanisms of action as well as certain more common and serious toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

    PubMed  PubMed Central  Google Scholar 

  2. Malmberg KJ. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother. 2004;53:879–92.

    Article  CAS  PubMed  Google Scholar 

  3. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Couzin-Frankel J. Breakthrough of the year: cancer immunotherapy. Science (80). 2013;342:1432–3.

    Article  CAS  Google Scholar 

  5. Kloke BP, et al. Cancer immunotherapy achieves breakthrough status: 12th annual meeting of the association for cancer immunotherapy (CIMT), Mainz, Germany, May 6–8, 2014. Cancer Immunol Immunother. 2015;64:923–30.

    Article  PubMed  Google Scholar 

  6. Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.12739.

    Article  PubMed  PubMed Central  Google Scholar 

  7. González S, et al. Conceptual aspects of self and nonself discrimination. Self Nonself. 2011;2:19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. 2014;10:41–62.

    Article  CAS  PubMed  Google Scholar 

  9. Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy. 2016;8:821–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hickey RM, et al. Immuno-oncology and its opportunities for interventional radiologists: immune checkpoint inhibition and potential synergies with interventional oncology procedures. J Vasc Interv Radiol. 2017.

  11. Robert C, Ghiringhelli F. What is the role of cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma? Oncologist. 2009;14:848–61.

    CAS  PubMed  Google Scholar 

  12. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 2011;17:6958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016;8:328rv4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HR, et al. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep. 2016;6:36956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nduom EK, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncol. 2016;18:195–205.

    Article  CAS  PubMed  Google Scholar 

  17. Maly J, Alinari L. Pembrolizumab in classical Hodgkin’s lymphoma. Eur J Haematol. 2016;97:219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reck M, et al. Pembrolizumab versus Chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  19. Ornstein MC, Rini BI. The safety and efficacy of nivolumab for the treatment of advanced renal cell carcinoma. Expert Rev Anticancer Ther. 2016;16:577–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wolchok JD, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markham A. Atezolizumab: first global approval. Drugs. 2016;76:1227–32.

    Article  CAS  PubMed  Google Scholar 

  22. Fehrenbacher L, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.

    Article  CAS  PubMed  Google Scholar 

  23. Inman BA, Longo TA, Ramalingam S, Harrison MR. Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res. 2017;23:1886–90.

    Article  CAS  PubMed  Google Scholar 

  24. Kotsakis A, Georgoulias V. Avelumab, an anti-PD-L1 monoclonal antibody, shows activity in various tumour types. Lancet Oncol. 2017;18:556–7.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pikor LA, Bell JC, Diallo JS. Oncolytic viruses: exploiting cancer’s deal with the devil. Trends Cancer. 2015;1:266–77.

    Article  PubMed  Google Scholar 

  27. Andtbacka RHI, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  28. Harrington KJ, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVMIa melanoma: subanalysis of the phase III OPTiM trial. OncoTargets Ther. 2016;9:7081–93.

    Article  CAS  Google Scholar 

  29. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22:1048–54.

    Article  CAS  PubMed  Google Scholar 

  30. Breitbach CJ, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99–102.

    Article  CAS  PubMed  Google Scholar 

  31. Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 2013;13:525–41.

    Article  CAS  PubMed  Google Scholar 

  32. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prasad V. Immunotherapy: tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol. 2017. https://doi.org/10.1038/nrclinonc.2017.156.

    Article  PubMed  Google Scholar 

  34. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13:370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neelapu SS, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2017. https://doi.org/10.1038/nrclinonc.2017.148.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang C, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers. Mol Ther. 2017;25:1248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen JE, et al. Adoptive cell therapy: past, present and future. Immunotherapy. 2017;9:183–96.

    Article  CAS  PubMed  Google Scholar 

  38. Chandran SS, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017;18:792–802.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rosenberg SA, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koh S, Bertoletti A. Cancer immunotherapy: targeting the difference. J Hepatol. 2014;61:1175–7.

    Article  PubMed  Google Scholar 

  41. Ye Z, Li Z, Jin H, Qian Q. Therapeutic cancer vaccines. Adv Exp Med Biol. 2016;909:139–67.

    Article  CAS  PubMed  Google Scholar 

  42. van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–33.

    Article  CAS  PubMed  Google Scholar 

  43. Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  44. Ott PA, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sahin U, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.

    Article  CAS  PubMed  Google Scholar 

  46. Phan GQ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci. 2003;100:8372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Digklia.

Ethics declarations

Conflict of interest

G. Coukos reports grants from Bristol‐Myers‐Squibb, Roche, the National Institutes of Health, Celgene and Boehringer–Ingelheim; personal fees from Roche and Genentech; and support for clinical trials from Bristol‐Myers‐Squibb, Merck and Roche. A. Denys is a contracted consultant for BTG, Farnham, UK. Patent WO 2012/073188 A1 was issued and licensed to BTG by A. Denys. K. Homicsko reports grant from Roche and is a consultant/advisory board member for BMS, Merck Serono, Roche and AMGEN. L.E. Kandalaft reports that she is a consultant/advisory board member of Geneos. A. Digklia and A. Hocquelet have nothing to disclose. R. Duran reports grant from BTG.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Digklia, A., Duran, R., Homicsko, K. et al. Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches. Cardiovasc Intervent Radiol 42, 1221–1229 (2019). https://doi.org/10.1007/s00270-018-2074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-2074-1

Keywords

Navigation