Skip to main content
Log in

Magnetic Particle Imaging Guided Real-Time Percutaneous Transluminal Angioplasty in a Phantom Model

  • Technical Note
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the potential of real-time magnetic particle imaging (MPI) to guide percutaneous transluminal angioplasty (PTA) of vascular stenoses in a phantom model.

Materials and Methods

Experiments were conducted on a custom-built MPI scanner. Vascular stenosis phantoms consisted of polyvinyl chloride tubes (inner diameter 8 mm) prepared with a centrally aligned cable tie to form ~ 50% stenoses. MPI angiography for visualization of stenoses was performed using the superparamagnetic iron oxide nanoparticle-based contrast agent Ferucarbotran (10 mmol (Fe)/l). Balloon catheters and guidewires for PTA were visualized using custom-made lacquer markers based on Ferucarbotran. Stenosis dilation (n = 3) was performed by manually inflating the PTA balloon with diluted Ferucarbotran. An online reconstruction framework was implemented for real-time imaging with very short latency time.

Results

Visualization of stenosis phantoms and guidance of interventional instruments in real-time (4 frames/s, ~ 100 ms latency time) was possible using an online reconstruction algorithm. Labeling of guidewires and balloon catheters allowed for precise visualization of instrument positions.

Conclusion

Real-time MPI-guided PTA in a phantom model is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Modan B, Keinan L, Blumstein T, Sadetzki S. Cancer following cardiac catheterization in childhood. Int J Epidemiol. 2000;29:424–8.

    Article  PubMed  CAS  Google Scholar 

  2. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72.

    Article  PubMed  Google Scholar 

  3. Bartorelli AL, Marenzi G. Contrast-induced nephropathy. J Interv Cardiol. 2008;21:74–85.

    Article  PubMed  Google Scholar 

  4. Krombach GA, Wehner M, Perez-Bouza A, Kaimann L, Kinzel S, Plum T, et al. Magnetic resonance-guided angioplasty with delivery of contrast-media doped solutions to the vessel wall: an experimental study in swine. Investig Radiol. 2008;43:530–7.

    Article  Google Scholar 

  5. Le Blanche AF, Rossert J, Wassef M, Lévy B, Bigot JM, Boudghene F. MR-Guided PTA in experimental bilateral rabbit renal artery stenosis and MR angiography follow-up versus histomorphometry. Cardiovasc Intervent Radiol. 2000;23:368–74.

    Article  PubMed  Google Scholar 

  6. Raman VK, Lederman RJ. Interventional cardiovascular magnetic resonance imaging. Trends Cardiovasc Med. 2007;17:196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Investig Radiol. 2008;43:141–4.

    Article  CAS  Google Scholar 

  8. Thomsen HS. Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin N Am. 2009;47:827–831-vi.

    Article  PubMed  Google Scholar 

  9. Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, et al. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol. 1997;38:584–97.

    PubMed  CAS  Google Scholar 

  10. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  PubMed  CAS  Google Scholar 

  11. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435:1214–7.

    Article  PubMed  CAS  Google Scholar 

  12. Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, et al. Magnetic particle imaging: current developments and future directions. Int J Nanomed. 2015;10:3097–114.

    Article  CAS  Google Scholar 

  13. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54:L1–10.

    Article  PubMed  CAS  Google Scholar 

  14. Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys Med Biol. 2016;61:6620–34.

    Article  PubMed  CAS  Google Scholar 

  15. Sedlacik J, Frölich A, Spallek J, Forkert ND, Faizy TD, Werner F, et al. Magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PLoS ONE. 2016;11:e0160097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Herz S, Vogel P, Kampf T, Rückert MA, Veldhoen S, Behr VC, et al. Magnetic particle imaging for quantification of vascular stenoses: a phantom study. IEEE Trans Med Imaging. 2017;37(1):61–7.

    Article  PubMed  Google Scholar 

  17. Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265:933–8.

    Article  PubMed  Google Scholar 

  18. Salamon J, Hofmann M, Jung C, Kaul MG, Werner F, Them K, et al. Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PLoS ONE. 2016;11:e0156899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Knopp T, Hofmann M. Online reconstruction of 3D magnetic particle imaging data. Phys Med Biol. 2016;61:N257–67.

    Article  PubMed  CAS  Google Scholar 

  20. Vogel P, Rückert MA, Klauer P, Herz S, Kampf T, Bley TA, et al. Real-time 3D dynamic rotating slice-scanning mode for traveling wave MPI. Int J Magn Part Imaging. 2017;3:1706001.

    Google Scholar 

  21. Vogel P, Herz S, Kampf T, Rückert MA, Bley TA, Behr VC. Low latency real-time reconstruction for MPI systems. Int J Magn Part Imaging. 2017;3:8.

    Google Scholar 

  22. Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson. 2013;229:116–26.

    Article  PubMed  CAS  Google Scholar 

  23. Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. Traveling wave magnetic particle imaging. IEEE Trans Med Imaging. 2014;33:400–7.

    Article  PubMed  Google Scholar 

  24. Vogel P, Lother S, Rückert MA, Kullmann WH, Jakob PM, Fidler F, et al. MRI meets MPI: a bimodal MPI-MRI tomograph. IEEE Trans Med Imaging. 2014;33:1954–9.

    Article  PubMed  Google Scholar 

  25. Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. Superspeed traveling wave magnetic particle imaging. IEEE Trans Magn. 2015;51(2):6501603.

    Google Scholar 

  26. Zheng B, Vazin T, Goodwill PW, Conway A, Verma A, Saritas EU, et al. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep. 2015;5:14055.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dössel O, Bohnert J. Safety considerations for magnetic fields of 10 mT to 100 mT amplitude in the frequency range of 10 kHz to 100 kHz for magnetic particle imaging. Biomed Eng. 2013;58:611–21.

    Article  Google Scholar 

  28. Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging. 2013;32:1600–10.

    Article  PubMed  Google Scholar 

  29. Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Buzug TM, et al. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI)—first experiences. J Healthc Eng. 2014;5:79–93.

    Article  PubMed  Google Scholar 

  30. Vogel P, Rückert MA, Kemp SJ, Khandhar AP, Ferguson RM, Vilter A, et al. Micro traveling wave MPI—initial results with optimized tracer LS-008. In: Proceedings of IWMPI. p. 139.

Download references

Acknowledgements

The project underlying this report was partially funded by the German Research Foundation (BE-5293/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Herz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 8916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herz, S., Vogel, P., Dietrich, P. et al. Magnetic Particle Imaging Guided Real-Time Percutaneous Transluminal Angioplasty in a Phantom Model. Cardiovasc Intervent Radiol 41, 1100–1105 (2018). https://doi.org/10.1007/s00270-018-1955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-1955-7

Keywords

Navigation