Skip to main content
Log in

Utility of Retrievable Inferior Vena Cava Filters: A Systematic Literature Review and Analysis of the Reasons for Nonretrieval of Filters with Temporary Indications

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the use of retrievable inferior vena cava (IVC) filters in the current practice and analyze the causes of filter left in situ despite initial plans for retrieval.

Methods

A systematic search of all English-language studies of retrievable IVC filters was conducted, including clinical trials and observational studies published between January 1984 and March 2016.

Results

A total of 103 studies were identified, including 10 filter models in 20,319 patients. Placement indications were reported for 11,128 (54.8%) patients, including therapeutic (n = 6270; 56.3%) and prophylactic (n = 4858; 43.7%) indications. A total of 13,224 (65.1%) filters were left as permanent devices; 7095 (34.9%) filters were removed. The reasons for filter nonretrieval among the 5308 (40.1%) reported cases were primary permanent indication (21.2%; 1127/5308), death (19.4%; 1031/5308), ongoing pulmonary embolism (PE) protection (19.0%; 1011/5308), failed retrieval (13.7%; 725/5308), loss to follow-up (13.0%; 689/5308), discontinued care (4.4%; 235/5308), physician oversight (4.0%; 213/5308), patient morbidity (2.8%; 149/5308), and patient refusal (2.4%; 128/5308). A total of 7820 patients presented for filter retrieval, and 7095 filters (90.7%) were successfully removed, with a mean indwelling time of 106.6 ± 47.3 days. Breakthrough PE was reported in 2.1% (191/9169) of patients. Filter tilt, recurrent deep vein thrombosis, penetration, IVC thrombosis, migration, and fracture occurred in 7.7% (798/10,348), 7.1% (362/5092), 5.4% (379/7001), 3.9% (345/8788), 1.4% (160/11,679), and 0.5% (50/9509) of patients, respectively.

Conclusions

Approximately two-thirds of retrievable filters were not retrieved even though more than 85% of the filters were initially intended for temporary use. The major reasons for filter left in situ despite initial plans for retrieval were death, need for ongoing PE protection, failed retrieval, loss to follow-up, discontinued care, and physician oversight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grassi C, Swan T, Cardella J, Meranze S, Oglevie S, Omary R, Roberts A, Sacks D, Silverstein M, Towbin R. Quality improvement guidelines for percutaneous permanent inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol. 2001;12:137–41.

    Article  CAS  PubMed  Google Scholar 

  2. Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol. 2011;22:1522–30.

    Article  PubMed  Google Scholar 

  3. Malgor RD, Labropoulos N. A systematic review of symptomatic duodenal perforation by inferior vena cava filters. J Vasc Surg. 2012;55:856–61.

    Article  PubMed  Google Scholar 

  4. Caplin DM, Nikolic B, Kalva SP, Ganguli S, Saad WE, Zuckerman DA, Society of Interventional Radiology Standards of Practice C. Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol. 2011;22:1499–506.

    PubMed  Google Scholar 

  5. Molvar C. Inferior vena cava filtration in the management of venous thromboembolism: filtering the data. Semin Interv Radiol. 2012;29:204–17.

    Article  Google Scholar 

  6. Yunus TE, Tariq N, Callahan RE, Niemeyer DJ, Brown OW, Zelenock GB, Shanley CJ. Changes in inferior vena cava filter placement over the past decade at a large community-based academic health center. J Vasc Surg. 2008;47:157–65.

    Article  PubMed  Google Scholar 

  7. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma G. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Morales JP, Li X, Irony TZ, Ibrahim NG, Moynahan M, Cavanaugh KJ. Decision analysis of retrievable inferior vena cava filters in patients without pulmonary embolism. J Vasc Surg Venous Lymphat Disord. 2013;1:376–84.

    Article  PubMed  Google Scholar 

  9. Tsui B, An T, Moon E, King R, Wang W. Retrospective review of 516 implantations of option inferior vena cava filters at a single health care system. J Vasc Interv Radiol. 2016;27:345–53.

    Article  PubMed  Google Scholar 

  10. Zhu X, Tam MD, Bartholomew J, Newman JS, Sands MJ, Wang W. Retrievability and device-related complications of the G2 filter: a retrospective study of 139 filter retrievals. J Vasc Interv Radiol. 2011;22:806–12.

    Article  PubMed  Google Scholar 

  11. Ray CE Jr, Mitchell E, Zipser S, Kao EY, Brown CF, Moneta GL. Outcomes with retrievable inferior vena cava filters: a multicenter study. J Vasc Interv Radiol. 2006;17:1595–604.

    Article  PubMed  Google Scholar 

  12. Charles HW, Black M, Kovacs S, Gohari A, Arampulikan J, McCann JW, Clark TW, Bashar M, Steiger D. G2 inferior vena cava filter: retrievability and safety. J Vasc Interv Radiol. 2009;20:1046–51.

    Article  PubMed  Google Scholar 

  13. Decousus H, Leizorovicz A, Parent F, Page Y, Tardy B, Girard P, Laporte S, Faivre R, Charbonnier B, Barral FG, Huet Y, Simonneau G. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N Engl J Med. 1998;338:409–15.

    Article  CAS  PubMed  Google Scholar 

  14. Jia Z, Wu A, Tam M, Spain J, McKinney JM, Wang W. Caval penetration by inferior vena cava filters: a systematic literature review of clinical significance and management. Circulation. 2015;132:944–52.

    Article  PubMed  Google Scholar 

  15. Darcy MD, Cardella JF, Hunter DW, Smith TP, Castaneda-Zuniga WR, Lund G, Amplatz K. Experience with the amplatz retrievable vena caval filter. Work in progress. Radiology. 1986;161:611–4.

    Article  CAS  PubMed  Google Scholar 

  16. Lee MJ, Valenti D, de Gregorio MA, Minocha J, Rimon U, Pellerin O. The cirse retrievable ivc filter registry: retrieval success rates in practice. Cardiovasc Interv Radiol. 2015;38:1502–7.

    Article  CAS  Google Scholar 

  17. Hammond CJ, Bakshi DR, Currie RJ, Patel JV, Kinsella D, McWilliams RG, Watkinson A, Nicholson AA. Audit of the use of IVC filters in the UK: experience from three centres over 12 years. Clin Radiol. 2009;64:502–10.

    Article  CAS  PubMed  Google Scholar 

  18. Peterson EA, Yenson PR, Liu D, Lee AY. Predictors of attempted inferior vena cava filters retrieval in a tertiary care centre. Thromb Res. 2014;134:300–4.

    Article  CAS  PubMed  Google Scholar 

  19. Mansour A, Ismael Y, Abdel-Razeq H. Inferior vena cava filters in patients with advanced-stage cancer. Hematol Oncol Stem Cell Ther. 2014;7:136–41.

    Article  PubMed  Google Scholar 

  20. Mahrer A, Zippel D, Garniek A, Golan G, Bensaid P, Simon D, Rimon U. Retrievable vena cava filters in major trauma patients: prevalence of thrombus within the filter. Cardiovasc Interv Radiol. 2008;31:785–9.

    Article  Google Scholar 

  21. Durack JC, Westphalen AC, Kekulawela S, Bhanu SB, Avrin DE, Gordon RL, Kerlan RK. Perforation of the IVC: rule rather than exception after longer indwelling times for the gunther tulip and celect retrievable filters. Cardiovasc Interv Radiol. 2012;35:299–308.

    Article  Google Scholar 

  22. Wang W, Zhou D, Obuchowski N, Spain J, An T. Fracture and migration of celect inferior vena cava filters: a retrospective review of 741 consecutive implantations. J Vasc Interv Radiol. 2013;24:1719–22.

    Article  PubMed  Google Scholar 

  23. Hull JE, Robertson SW. Bard recovery filter: evaluation and management of vena cava limb perforation, fracture, and migration. J Vasc Interv Radiol. 2009;20:52–60.

    Article  PubMed  Google Scholar 

  24. Sutphin PD, Reis SP, McKune A, Ravanzo M, Kalva SP, Pillai AK. Improving inferior vena cava filter retrieval rates with the define, measure, analyze, improve, control methodology. J Vasc Interv Radiol. 2015;26:491–8.

    Article  PubMed  Google Scholar 

  25. Stoneburner Jr CGR, McKinney B, Wang W, Sella D, Paz-Fumagalli R, Frey G, Starke L, Gregory D, McKinney J. Implementing a system for inferior vena cava filter follow-up and retrieval: a quality improvement approach. In: The International symposium on endovascular therapy (ISET); 2016, p. 6–10.

  26. Minocha J, Idakoji I, Riaz A, Karp J, Gupta R, Chrisman HB, Salem R, Ryu RK, Lewandowski RJ. Improving inferior vena cava filter retrieval rates: impact of a dedicated inferior vena cava filter clinic. J Vasc Interv Radiol. 2010;21:1847–51.

    Article  PubMed  Google Scholar 

  27. Zhou D, Spain J, Moon E, McLennan G, Sands MJ, Wang W. Retrospective review of 120 celect inferior vena cava filter retrievals: experience at a single institution. J Vasc Interv Radiol. 2012;23:1557–63.

    Article  PubMed  Google Scholar 

  28. Scher D, Venbrux A, Okapal K, Gabriel G, Dufour R, Chun A, Sarin S, Akman A. Retrieval of trapease and optease inferior vena cava filters with extended dwell times. J Vasc Interv Radiol. 2015;26:1519–25.

    Article  PubMed  Google Scholar 

  29. Kuo WT, Odegaard JI, Rosenberg JK, Hofmann LV. Excimer laser-assisted removal of embedded inferior vena cava filters: a single-center prospective study. Circ Cardiovasc Interv. 2013;6:560–6.

    Article  PubMed  Google Scholar 

  30. Kuo WT, Cupp JS, Louie JD, Kothary N, Hofmann LV, Sze DY, Hovsepian DM. Complex retrieval of embedded ivc filters: alternative techniques and histologic tissue analysis. Cardiovasc Interv Radiol. 2012;35:588–97.

    Article  Google Scholar 

  31. Teo TKB, Angle JF, Shipp JI, Bluett MK, Gilliland CA, Turba UC, Matsumoto AH. Incidence and management of inferior vena cava filter thrombus detected at time of filter retrieval. J Vasc Interv Radiol. 2011;22:1514–20.

    Article  PubMed  Google Scholar 

  32. Food and drug administration. Removing retrievable inferior vena cava filters: FDA safety communication. http://www.Fda.Gov/medicaldevices/safety/alertsandnotices/ucm396377.Htm. Accessed 30 Oct 2014.

Download references

Funding

Zhongzhi Jia was a research fellow at Mayo Clinic during 2016. He was sponsored by the High-Level Medical Talents Training Project of Changzhou, China (2016CZBJ009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Wang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Fuller, T.A., McKinney, J.M. et al. Utility of Retrievable Inferior Vena Cava Filters: A Systematic Literature Review and Analysis of the Reasons for Nonretrieval of Filters with Temporary Indications. Cardiovasc Intervent Radiol 41, 675–682 (2018). https://doi.org/10.1007/s00270-018-1880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-1880-9

Keywords

Navigation