Skip to main content

Advertisement

Log in

Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2018

This article has been updated

Abstract

Purpose

We aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.

Materials and Methods

Patients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.

Results

421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.

Conclusions

The PNAV score is an objective and easy approach to predict the risk of new AVCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 16 May 2018

    The following information in bold type should be added to the Acknowledgements section.

References

  1. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166–8.

    PubMed  CAS  Google Scholar 

  2. Buchbinder R, Osborne RH, Ebeling PR, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. New Engl J Med. 2009;361(6):557–68.

    Article  PubMed  CAS  Google Scholar 

  3. Kallmes DF, Comstock BA, Heagerty PJ, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. New Engl J Med. 2009;361(6):569–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Klazen CA, Lohle PN, de Vries J, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92.

    Article  PubMed  Google Scholar 

  5. Smieliauskas F, Lam S, Howard DH. Impact of negative clinical trial results for vertebroplasty on vertebral augmentation procedure rates. J Am Coll Surg. 2014;219(3):525–33.

    Article  PubMed  Google Scholar 

  6. Martinez-Ferrer A, Blasco J, Carrasco JL, et al. Risk factors for the development of vertebral fractures after percutaneous vertebroplasty. J Bone Miner Res. 2013;28(8):1821–9.

    Article  PubMed  CAS  Google Scholar 

  7. Tseng YY, Yang TC, Tu PH, Lo YL, Yang ST. Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty. Spine. 2009;34(18):1917–22.

    Article  PubMed  Google Scholar 

  8. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology. 2003;226(1):119–24.

    Article  PubMed  Google Scholar 

  9. Zhong BY, Wu CG, He SC, et al. ANVCFV Score System: assessment for probability of new vertebral compression fractures after percutaneous vertebroplasty in patients with vertebral compression fractures. Pain Physician. 2015;18(6):E1047–57.

    PubMed  Google Scholar 

  10. Baek SW, Kim C, Chang H. The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos Int. 2015;26(5):1507–13.

    Article  PubMed  Google Scholar 

  11. Lin EP, Ekholm S, Hiwatashi A, Westesson PL. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol. 2004;25(2):175–80.

    PubMed  Google Scholar 

  12. Liu WG, He SC, Deng G, et al. Risk factors for new vertebral fractures after percutaneous vertebroplasty in patients with osteoporosis: a prospective study. J Vasc Interv Radiol. 2012;23(9):1143–9.

    Article  PubMed  Google Scholar 

  13. Nieuwenhuijse MJ, Putter H, van Erkel AR, Dijkstra PD. New vertebral fractures after percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures: a clustered analysis and the relevance of intradiskal cement leakage. Radiology. 2013;266(3):862–70.

    Article  PubMed  Google Scholar 

  14. Lee KA, Hong SJ, Lee S, Cha IH, Kim BH, Kang EY. Analysis of adjacent fracture after percutaneous vertebroplasty: does intradiscal cement leakage really increase the risk of adjacent vertebral fracture? Skelet Radiol. 2011;40(12):1537–42.

    Article  Google Scholar 

  15. Wang YT, Wu XT, Chen H, Wang C, Mao ZB. Adjacent-level symptomatic fracture after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a retrospective analysis. J Orthop Sci. 2014;19(6):868–76.

    Article  PubMed  Google Scholar 

  16. Lin WC, Cheng TT, Lee YC, et al. New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: retrospective analysis of risk factors. J Vasc Interv Radiol. 2008;19(2 Pt 1):225–31.

    Article  PubMed  Google Scholar 

  17. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604.

    Article  PubMed  Google Scholar 

  18. Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23(10):1631–60.

    Article  PubMed  Google Scholar 

  19. Movrin I. Adjacent level fracture after osteoporotic vertebral compression fracture: a nonrandomized prospective study comparing balloon kyphoplasty with conservative therapy. Wien Klin Wochenschr. 2012;124(9–10):304–11.

    Article  PubMed  Google Scholar 

  20. Baroud G, Nemes J, Heini P, Steffen T. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J. 2003;12(4):421–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sun YC, Teng MM, Yuan WS, et al. Risk of post-vertebroplasty fracture in adjacent vertebral bodies appears correlated with the morphologic extent of bone cement. J Chin Med Assoc. 2011;74(8):357–62.

    Article  PubMed  Google Scholar 

  22. Ahn Y, Lee JH, Lee HY, Lee SH, Keem SH. Predictive factors for subsequent vertebral fracture after percutaneous vertebroplasty. J Neurosurg Spine. 2008;9(2):129–36.

    Article  PubMed  Google Scholar 

  23. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991;114(11):919–23.

    Article  PubMed  CAS  Google Scholar 

  24. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721–39.

    Article  PubMed  CAS  Google Scholar 

  25. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  26. Verhage AH. CBO guideline ‘osteoporosis’ (second revision). Ned Tijdschr Geneeskd. 2002;146(51):2512–3.

    PubMed  CAS  Google Scholar 

  27. Link TM, Koppers BB, Licht T, Bauer J, Lu Y, Rummeny EJ. In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology. 2004;231(3):805–11.

    Article  PubMed  Google Scholar 

  28. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt surg. 2011;93(11):1057–63.

    Article  Google Scholar 

  29. Hiwatashi A, Yoshiura T, Yamashita K, Kamano H, Dashjamts T, Honda H. Subsequent fracture after percutaneous vertebroplasty can be predicted on preoperative multidetector row CT. Am J Neuroradiol. 2009;30(10):1830–4.

    Article  PubMed  CAS  Google Scholar 

  30. Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.

    Article  PubMed  Google Scholar 

  31. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335(7611):136.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Briot K. DXA parameters: beyond bone mineral density. Jt Bone Spine. 2013;80(3):265–9.

    Article  Google Scholar 

  33. Westerveld LA, Verlaan JJ, Lam MG, et al. The influence of diffuse idiopathic skeletal hyperostosis on bone mineral density measurements of the spine. Rheumatology. 2009;48(9):1133–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Basic Research Program of China (973 Program # 2013CB733800, 2013733803), the National High-tech Research Foundation of China (863 project #2012AA022701), the National Scientific and Technical Achievement Translation Foundation ([2012]258), the Jiangsu Provincial Special Program of Medical Science (BL2013029), and the National Natural Science Foundation of China (81230034, 81171434). Funding sources had no involvement in the financial support for the conduct of the research and preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Jun Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Bin-Yan Zhong, Shi-Cheng He, and Hai-Dong Zhu have contributed equally to the project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, BY., He, SC., Zhu, HD. et al. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model. Cardiovasc Intervent Radiol 40, 277–284 (2017). https://doi.org/10.1007/s00270-016-1492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-016-1492-1

Keywords

Navigation