Advertisement

CardioVascular and Interventional Radiology

, Volume 40, Issue 2, pp 277–284 | Cite as

Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

  • Bin-Yan Zhong
  • Shi-Cheng He
  • Hai-Dong Zhu
  • Chun-Gen Wu
  • Wen Fang
  • Li Chen
  • Jin-He Guo
  • Gang Deng
  • Guang-Yu Zhu
  • Gao-Jun Teng
Clinical Investigation

Abstract

Purpose

We aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.

Materials and Methods

Patients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.

Results

421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.

Conclusions

The PNAV score is an objective and easy approach to predict the risk of new AVCFs.

Keywords

Osteoporotic vertebral compression fractures Percutaneous vertebroplasty New vertebral fracture Adjacent Risk prediction Validation 

Notes

Acknowledgements

This study was funded by the National Basic Research Program of China (973 Program # 2013CB733800, 2013733803), the National High-tech Research Foundation of China (863 project #2012AA022701), the National Scientific and Technical Achievement Translation Foundation ([2012]258), the Jiangsu Provincial Special Program of Medical Science (BL2013029), and the National Natural Science Foundation of China (81230034, 81171434). Funding sources had no involvement in the financial support for the conduct of the research and preparation of the article.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166–8.PubMedGoogle Scholar
  2. 2.
    Buchbinder R, Osborne RH, Ebeling PR, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. New Engl J Med. 2009;361(6):557–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Kallmes DF, Comstock BA, Heagerty PJ, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. New Engl J Med. 2009;361(6):569–79.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Klazen CA, Lohle PN, de Vries J, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Smieliauskas F, Lam S, Howard DH. Impact of negative clinical trial results for vertebroplasty on vertebral augmentation procedure rates. J Am Coll Surg. 2014;219(3):525–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Martinez-Ferrer A, Blasco J, Carrasco JL, et al. Risk factors for the development of vertebral fractures after percutaneous vertebroplasty. J Bone Miner Res. 2013;28(8):1821–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Tseng YY, Yang TC, Tu PH, Lo YL, Yang ST. Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty. Spine. 2009;34(18):1917–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology. 2003;226(1):119–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhong BY, Wu CG, He SC, et al. ANVCFV Score System: assessment for probability of new vertebral compression fractures after percutaneous vertebroplasty in patients with vertebral compression fractures. Pain Physician. 2015;18(6):E1047–57.PubMedGoogle Scholar
  10. 10.
    Baek SW, Kim C, Chang H. The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos Int. 2015;26(5):1507–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Lin EP, Ekholm S, Hiwatashi A, Westesson PL. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol. 2004;25(2):175–80.PubMedGoogle Scholar
  12. 12.
    Liu WG, He SC, Deng G, et al. Risk factors for new vertebral fractures after percutaneous vertebroplasty in patients with osteoporosis: a prospective study. J Vasc Interv Radiol. 2012;23(9):1143–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Nieuwenhuijse MJ, Putter H, van Erkel AR, Dijkstra PD. New vertebral fractures after percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures: a clustered analysis and the relevance of intradiskal cement leakage. Radiology. 2013;266(3):862–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee KA, Hong SJ, Lee S, Cha IH, Kim BH, Kang EY. Analysis of adjacent fracture after percutaneous vertebroplasty: does intradiscal cement leakage really increase the risk of adjacent vertebral fracture? Skelet Radiol. 2011;40(12):1537–42.CrossRefGoogle Scholar
  15. 15.
    Wang YT, Wu XT, Chen H, Wang C, Mao ZB. Adjacent-level symptomatic fracture after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a retrospective analysis. J Orthop Sci. 2014;19(6):868–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Lin WC, Cheng TT, Lee YC, et al. New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: retrospective analysis of risk factors. J Vasc Interv Radiol. 2008;19(2 Pt 1):225–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604.CrossRefPubMedGoogle Scholar
  18. 18.
    Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23(10):1631–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Movrin I. Adjacent level fracture after osteoporotic vertebral compression fracture: a nonrandomized prospective study comparing balloon kyphoplasty with conservative therapy. Wien Klin Wochenschr. 2012;124(9–10):304–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Baroud G, Nemes J, Heini P, Steffen T. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J. 2003;12(4):421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sun YC, Teng MM, Yuan WS, et al. Risk of post-vertebroplasty fracture in adjacent vertebral bodies appears correlated with the morphologic extent of bone cement. J Chin Med Assoc. 2011;74(8):357–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Ahn Y, Lee JH, Lee HY, Lee SH, Keem SH. Predictive factors for subsequent vertebral fracture after percutaneous vertebroplasty. J Neurosurg Spine. 2008;9(2):129–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991;114(11):919–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721–39.CrossRefPubMedGoogle Scholar
  25. 25.
    Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Verhage AH. CBO guideline ‘osteoporosis’ (second revision). Ned Tijdschr Geneeskd. 2002;146(51):2512–3.PubMedGoogle Scholar
  27. 27.
    Link TM, Koppers BB, Licht T, Bauer J, Lu Y, Rummeny EJ. In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology. 2004;231(3):805–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt surg. 2011;93(11):1057–63.CrossRefGoogle Scholar
  29. 29.
    Hiwatashi A, Yoshiura T, Yamashita K, Kamano H, Dashjamts T, Honda H. Subsequent fracture after percutaneous vertebroplasty can be predicted on preoperative multidetector row CT. Am J Neuroradiol. 2009;30(10):1830–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335(7611):136.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Briot K. DXA parameters: beyond bone mineral density. Jt Bone Spine. 2013;80(3):265–9.CrossRefGoogle Scholar
  33. 33.
    Westerveld LA, Verlaan JJ, Lam MG, et al. The influence of diffuse idiopathic skeletal hyperostosis on bone mineral density measurements of the spine. Rheumatology. 2009;48(9):1133–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2016

Authors and Affiliations

  • Bin-Yan Zhong
    • 1
  • Shi-Cheng He
    • 1
  • Hai-Dong Zhu
    • 1
  • Chun-Gen Wu
    • 2
  • Wen Fang
    • 1
  • Li Chen
    • 1
  • Jin-He Guo
    • 1
  • Gang Deng
    • 1
  • Guang-Yu Zhu
    • 1
  • Gao-Jun Teng
    • 1
  1. 1.Department of Radiology, Medical School, Zhongda HospitalSoutheast UniversityNanjingChina
  2. 2.Department of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations