Multi-methodical study of the Ti, Fe2+ and Fe3+ distribution in chevkinite-subgroup minerals: X-ray diffraction, neutron diffraction, 57Fe Mössbauer spectroscopy and electron-microprobe analyses

Abstract

Three non-metamict chevkinite-subgroup minerals, space group P21/a, from Cape Ashizuri, Japan, (No. 1), Tangir Valley, Diamar District, Pakistan (No. 2) and Haramosh Mts., Skardu district, Pakistan, (No. 3) were studied by crystal chemical techniques. Powder X-ray diffraction and transmission electron microscopic observations confirmed well crystalline samples. Electron-microprobe analyses indicated the general composition [(REE, Ca)4Fe2+(Fe2+, Fe3+, Ti)2Ti2(Si2O7)2O8] known for chevkinite-(Ce). Site scattering values determined by single-crystal X-ray structure refinements suggested assignment of subordinate Nb to the octahedral M3 and M4 sites, minor Th to M1 for the Ashizuri sample and minor Mg to M1 for both samples from Pakistan. Neutron time-of-flight powder diffraction studies were applied to determine the Ti/Fe distribution among octahedral sites for all samples and Mössbauer spectroscopy served for the Fe valence assignment at the four octahedral sites. Combined results gave the simplified formulas with Ce as dominant REE: No. 1 A(REE,Ca)4M1(Fe2+,Ti)M2(Ti,Fe3+)2M3,M4(Ti,Fe2+,Nb)2(Si2O7)2O8, No. 2 A(REE,Ca)4M1(Fe2+,Fe3+,Mg)M2(Ti,Fe3+)2M3,M4(Ti,Fe2+)2(Si2O7)2O8 and No. 3 A(REE,Ca)4M1(Fe3+,Fe2+,Mg,Ti)M2(Ti,Fe3+)2M3,M4(Ti,Fe2+)2(Si2O7)2O8. The dominant iron valence at M1 of the Haramosh sample (No. 3) is ferric whereas for samples Nos. 1 and 2 iron is ferrous. The structure of chevkinite-subgroup minerals consists of octahedral layers (M2, M3 and M4) alternating with an intermediate layer containing disilicate groups, REE polyhedra and strongly distorted M1 octahedra. Increased O atomic displacement parameters within the intermediate layers indicate disorder and/or strain to fit the extension of the embracing octahedral layers. A statistical analysis of chevkinite-subgroup structures (space groups P21/a, C2/m and P21/m) indicates a positive correlation between < M1–O > bond length and M1 bond angle variance. A negative correlation is found between < M1–O > bond length and the disilicate bending angle Si–O–Si, varying between ca. 160° and 175°. Outliers of this trend are delhuyarite-(Ce) Ce4Mg(Fe3+2W)□(Si2O7)2O6(OH)2, mainly due to octahedral W6+ and vacancies in the octahedral layers associated with OH groups, and synthetic Nd end-members with strong bonds between Nd and the intersecting O of the disilicate group. The observed trends reflect the main mechanisms in the intermediate layer to adopt to the size of the embracing rigid octahedral layers formed by M2, M3 and M4 octahedra.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akasaka M, Shinno I (1992) Mössbauer spectroscopy and its recent application to silicate mineralogy. J Miner Soc Japan 21:3–20 (In Japanese with English abstract)

    Google Scholar 

  2. Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Miner 11:37–51

    Article  Google Scholar 

  3. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  4. Bagiński B, Macdonald R (2013) The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia 44:99–114

    Article  Google Scholar 

  5. Baur H (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr B 30:1195–1215

    Article  Google Scholar 

  6. Belkin HE, Macdonald R, Grew ES (2009) Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Miner Mag 73:149–164

    Article  Google Scholar 

  7. Bender FK, Raza HA (1995) Geology of Pakistan. Gebrüder Borntraeger Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  8. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B 41:244–247

    Article  Google Scholar 

  9. Bruker AXS Inc (1999) SMART and SAINT–Plus. Versions 6.01. Bruker AXS Inc., Madison

    Google Scholar 

  10. Burg JP, Jagoutz O, Hamid D, Hussain S (2006) Precollision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25:TC5005

    Article  Google Scholar 

  11. Calvo C, Faggiani R (1974) A re-investigation of the crystal structures of chevkinite and perrierite. Am Miner 59:1277–1285

    Google Scholar 

  12. Chukanov NV, Aksenov S, Rastsvetaeva RK, Belakovskiy DI, Göttlicher J, Britvin SN, Möckel S (2012) Christofschäferite-(Ce), (Ce, La, Ca)4Mn2+(Ti, Fe3+)3(Fe3+, Fe2+, Ti)(Si2O7)2O8—a new chevkinite-group mineral from the Eifel area, Germany. New Data Miner 47:33–42

    Google Scholar 

  13. Gottardi G (1960) The crystal structure of perrierite. Am Miner 45:1–14

    Google Scholar 

  14. Hattori T, Sano-Furukawa A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Iamiyama T, Arai M, Yagi T (2015) Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl Instrum Methods Phys Res A780:55–67

    Article  Google Scholar 

  15. Holtstam D, Bindi L, Hålenius U, Andersson UB (2017) Delhuyarite-(Ce)—Ce4Mg(Fe3+2W)□(Si2O7)2O6(OH)2—a new mineral of the chevkinite group, from the Nya Bastnäs Fe-Cu-REE deposit, Sweden. Eur J Miner 29:897–905

    Article  Google Scholar 

  16. Imaoka T (1994) Chevkinite in syenite from Cape Ashizuri, Shikoku Island, Japan. N Jb Miner Monats H8:358–366

    Google Scholar 

  17. Ishihara S, Hoshino M (2013) Zircon and REE-rich alkaline plutonic rocks intruded into the accretionary prism at the Cape Ashizuri, Shikoku Island, Japan. Bull Geol Surv Jp 64:1–24

    Article  Google Scholar 

  18. Ito J (1967) A study of chevkinite and perrierite. Am Miner 52:1094–1104

    Google Scholar 

  19. Ito J, Arem E (1971) Chevkinite and perrierite: synthesis, crystal growth and polymorphism. Am Miner 56:307–319

    Google Scholar 

  20. Jagoutz OE, Müntener O, Ulmer P, Pettke T, Burg J-P, Dawood H, Hussain S (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48:1895–1953

    Article  Google Scholar 

  21. Khan MA, Jan MQ, Windley BF, Tarney J, Thirlwall MF (1989) The Chilas mafic-ultramafic igneous complex; the root of the Kohistan island arc in the Himalaya of the northern Pakistan. In: Malinconico LL Jr, Lillie RJ (eds) Tectonics of the Western Himalayas, 232nd edn. Geological Society of America, Washington, pp 75–94

    Google Scholar 

  22. Liu Y, Ma C (2015) Monazite, chevkinite-perrierite and xenotime in Martian breccia meteorite NWA7034. IN: 46th lunar and planetary science conference 2015, p 1287

  23. Liu Y, Ma C, Beckett J, Guan Y (2015) Rare-earth minerals in the Martian meteorite NWA7034/7533: evidence for fluid-rock interaction in the Martian crust. In: 78th annual meeting of the meteoritical society, p 5051

  24. Liu Y, Ma C, Beckett JR, Chen Y, Guan Y (2016) Rare-earth-element minerals in Martian breccia meteorites NWA7034 and 7533: implications for fluid-rock interaction in the Martian crust. Earth Planet Sci Lett 451:252–262

    Article  Google Scholar 

  25. Liziero F (2008a) Studio cristallochimico e strutturale di chevkiniti-(Ce) non metamittiche. Universita’ degli studi di Padova, Padua, p 117

    Google Scholar 

  26. Liziero F (2008b) Crystal chemistry and structure of non-metamict chevkinite-(Ce). Plinius 34:90–91

    Google Scholar 

  27. Li Z, Jin M, Liu M, Liu X (1992) Iron distribution in chevkinite. Hyperfine Interact 70:1057–1060

    Article  Google Scholar 

  28. Li G, Yang G, Ma Z, Shi N, Xiong M, Fan H, Sheng G (2005) Crystal structure of natural non-metamict Ti- and Fe2+-rich chevkinite-(Ce). Acta Geol Sinica 79:325–331

    Article  Google Scholar 

  29. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectr 11:899–904

    Article  Google Scholar 

  30. Macdonald R, Belkin HE (2002) Compositional variation in minerals of the chevkinite group. Miner Mag 66:1075–1098

    Article  Google Scholar 

  31. Macdonald R, Belkin HE, Wall F, Bagiński B (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Miner Mag 73:777–796

    Article  Google Scholar 

  32. Macdonald R, Bagiński B, Belkin HE, Stachowicz M (2019) Composition, paragenesis, and alteration of the chevkinite group of minerals. Am Miner 104:348–369

    Article  Google Scholar 

  33. Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1257–1276

    Article  Google Scholar 

  34. Momma K, Tsutusmi Y, Sano T, Miyawaki R, Shigeoka M, Yokoyama K (2016) Chevkinite-bearing tuffs from the Boso and Noto Peninsulas in Central Japan and from Primorye, Far East Russia. Mem Natl Mus Nat Sci Tokyo 51:89–98

    Google Scholar 

  35. Muhling JR, Suvorova AA, Rasmussen B (2014) The occurrence and composition of chevkinite-(Ce) and perrierite-(Ce) in tholeiitic intrusive rocks and lunar mare basalt. Am Miner 99:1911–1921

    Article  Google Scholar 

  36. Murakami N, Imaoka T, Uozumi S (1989) Ring complex of Cape of Ashizuri, and its mode of emplacement, Kochi Prefecture, Southwest Japan. Assoc Geol Collab Jpn Monogr 36:115–142 (in Japanese with English abstract)

    Google Scholar 

  37. Nagashima M, Imaoka T, Nakashima K (2011) Crystal chemistry of Ti-rich ferriallanite-(Ce) from Cape Ashizuri, Shikoku Island, Japan. Am Miner 96:1870–1877

    Article  Google Scholar 

  38. Noritake F (2019) Revisiting the nature of Si–O–Si bridging. J Comput Chem Jpn Int Edn 5:1–8

    Google Scholar 

  39. Noritake F, Kawamura K (2015) The nature of Si-O-Si bonding via molecular orbital calculations. J Comp Chem Japan 14:124–130

    Article  Google Scholar 

  40. Oishi-Tomiyasu R, Yonemura M, Morishima T (2012) Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. J Appl Crystallogr 45:299–308

    Article  Google Scholar 

  41. Oishi R, Yonemura M, Nishimaki Y, Torii S, Hoshikawa A, Ishigaki T, Morishima T, Mori K, Kamiyama T (2009) Rietveld analysis software for J-PARC. Nucl Instrum Methods Phys Res A 600:94–96

    Article  Google Scholar 

  42. Peng Z, Pan Z (1964) The crystal structure of chevkinite. Sci Sinica 13:1539–1545 (in Russian)

    Google Scholar 

  43. Popov VA, Pautov LA, Sokolova E, Hawthorne FC, McCammon C, Bazhenova LF (2001) Polyakovite-(Ce), (REE, Ca)4(Mg, Fe2+)(Cr3+, Fe3+)2(Ti, Nb) 22, a new metamict mineral species from the Ilmen Mountains, Southern Urals, Russia: Mineral description and crystal chemistry. Can Miner 39:1095–1104

    Article  Google Scholar 

  44. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  45. Schaltegger U, Zeilinger G, Frank M, Burg JP (2002) Multiple mantle sources during island arc magmatism: U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14:461–468

    Article  Google Scholar 

  46. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3:26–37

    Article  Google Scholar 

  47. Shah MY (2017) Mineral potential in Diamer District. Pamir Times, Kabul, p 24

    Google Scholar 

  48. Sheldrick GM (1996) SADABS. University of Göttingen, Germany

    Google Scholar 

  49. Sheldrick GM (2015) Crystal structure refinement with SHELX. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  50. Shen G, Yang G, Xu J (2005) Maoniupingite-(Ce): a new rare-earth mineral from the Maoniuping rare-earth deposit in Mianning, Sichuan, China. Sedim Geol Tethyan Geol 25:210–216 (in Chinese with English abstract)

    Google Scholar 

  51. Shibata K (1968) K-Ar age determinations on granitic and metamorphic rocks in Japan. Rept Geol Surv Jpn 227:73

    Google Scholar 

  52. Shinjoe H, Orihashi Y, Sumii T (2010) U-Pb zircon ages of syenitic and granitic rocks in the Ashizuri igneous complex, western Shikoku: constraint for the origin of forearc alkaline magmatism. Geochem J 44:275–283

    Article  Google Scholar 

  53. Sokolova E, Hawthorne FC, Della Ventura G, Kartashov PM (2004) Chevkinite-(Ce): crystal structure and the effect of moderate radiation-induced damage on site-occupancy refinement. Can Miner 42:1013–1025

    Article  Google Scholar 

  54. Song R, Ding K, Li Z (1999) Site occupancies of iron in saimaite and chevkinite. Chin Sci Bull 44:2274–2276

    Article  Google Scholar 

  55. Stachowicz M, Bagiński B, Macdonald R, Kartashov PM, Oziębło A, Woźniak K (2014) Structure of Sr-Zr-bearing perrierite-(Ce) from the Burpala Massif, Russia. Miner Mag 78:1647–1659

    Article  Google Scholar 

  56. Stachowicz M, Bagiński B, Welch MD, Kartashov PM, Macdonald R, Balcerzak J, Tyczkowski J, Woźniak K (2019a) Cation ordering, valence states, and symmetry breaking in the crystal-chemically complex mineral chevkinite-(Ce): X-ray diffraction and photoelectron spectroscopy studies and mechanisms of Nb enrichment. Am Miner 104:595–602

    Article  Google Scholar 

  57. Stachowicz M, Welch MD, Bagiński B, Kartashov PM, Macdonald R, Woźniak K (2019b) Cation ordering valence states, and symmetry breaking in the crystal-chemically complex mineral chevkinite-(Ce): recrystallization, transformation, and metamict states in chevkinite. Am Miner 102:1481–1486

    Article  Google Scholar 

  58. Xu J, Yang G, Li G, Wu Z, Shen G (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe mine, China: both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. Am Mineral 93:740–744

    Article  Google Scholar 

  59. Yang Z, Fleck M, Smith M, Tao K, Song R, Zhang P (2002) The crystal structure of natural Fe-rich chevkinite. Eur J Miner 14:969–975

    Article  Google Scholar 

  60. Yang Z, Li H, Liu M, Pertlik F (2007) Crystal chemistry of iron in non-metamict chevkinite-(Ce): valence state and site occupation proportions. J Rare Earths 25:238–242

    Article  Google Scholar 

  61. Yang Z, Pertlik F, Fleck M (2008) Hydroxyl groups in nonmetamict chevkinite-(Ce): a crystal chemical discussion. J Rare Earths 26:609–613

    Article  Google Scholar 

  62. Young RA (1993) Introduction to the Rietveld method. In: Young RA (ed) The Rietveld Method. Oxford Science Publications, Oxford, pp 1–38

    Google Scholar 

Download references

Acknowledgements

The TOF neutron diffraction experiments were performed under proposal No. 2015A0034 in J-PARC. The TEM session was performed at facilities of the Institute for Solid State Physics, University of Tokyo (project Nos. BG81 and BG19). We thank Mr. Y. Morifuku for his technical assistance in using EMPA. We also thank the Editor Prof. M. Rieder, and the reviewers Prof. N.V. Chukanov and an anonymous reviewer for their constructive comments. Part of this research has been supported by the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant no. 18K03782).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariko Nagashima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagashima, M., Armbruster, T., Akasaka, M. et al. Multi-methodical study of the Ti, Fe2+ and Fe3+ distribution in chevkinite-subgroup minerals: X-ray diffraction, neutron diffraction, 57Fe Mössbauer spectroscopy and electron-microprobe analyses. Phys Chem Minerals 47, 29 (2020). https://doi.org/10.1007/s00269-020-01096-5

Download citation

Keywords

  • Chevkinite
  • Crystal structure
  • TOF neutron Rietveld
  • 57Fe Mössbauer spectroscopy