Physics and Chemistry of Minerals

, Volume 46, Issue 7, pp 727–741 | Cite as

Redefinition and crystal chemistry of samarskite-(Y), YFe3+Nb2O8: cation-ordered niobate structurally related to layered double tungstates

  • Sergey N. BritvinEmail author
  • Igor V. Pekov
  • Maria G. Krzhizhanovskaya
  • Atali A. Agakhanov
  • Bernd Ternes
  • Willi Schüller
  • Nikita V. Chukanov
Original Paper


Samarskite-(Y), the mineral known for almost 180 years only in metamict (X-ray amorphous) state, was found as non-metamict crystals in sanidinites of the Laach Lake (Laacher See), Eifel volcanic region, Germany. The crystal structure has been solved for the first time and refined to R1 = 1.1% based on 838 observed [I > 2σ(I)] independent reflections. Samarskite-(Y) is monoclinic, P2/c, a 9.8020(8), b 5.6248(3), c 5.2073(4) Å, β 93.406(4)°, V 286.59(4) Å3, Z = 2. The empirical formula (calculated on 8 O apfu) is \(\left[ {\left( {{\text{Y}}_{0. 2 5} Ln_{0. 1 8} } \right)_{\varSigma 0. 4 3} {\text{Th}}_{0. 3 7} {\text{U}}_{0. 1 3}^{ 4+ } {\text{Ca}}_{0.0 3} } \right]_{\varSigma 0. 9 6} \left( {{\text{Fe}}_{0. 7 3}^{ 3+ } {\text{Mn}}_{0. 1 8}^{ 2+ } } \right)_{\varSigma 0. 9 1} \left( {{\text{Nb}}_{ 1. 8 5} {\text{Ti}}_{0.0 6} {\text{Zr}}_{0.0 6} {\text{Ta}}_{0.0 3} {\text{W}}_{0.0 2} } \right)_{\varSigma 2.0 2} {\text{O}}_{ 8}\). Samarskite-(Y) from the type locality, the Blyumovskaya Pit, Ilmeny Mountains, South Urals, Russia, was studied for comparison; electron microprobe data showed the same species-defining constituents and stoichiometry: \(\left[ {\left( {{\text{Y}}_{0. 3 4} Ln_{0. 20} } \right)_{\varSigma 0. 5 4} {\text{U}}_{0. 4 2}^{ 4+ } {\text{Th}}_{0.0 3} } \right]_{\varSigma 0. 9 9} \left( {{\text{Fe}}_{0. 8 6}^{ 3+ } {\text{Mn}}_{0.0 8}^{ 2+ } } \right)_{\varSigma 0. 9 4} \left( {{\text{Nb}}_{ 1. 1 4} {\text{Ta}}_{0. 70} {\text{Ti}}_{0. 1 5} } \right)_{\varSigma 1. 9 9} {\text{O}}_{ 8}\). Samarskite-(Y) is the first example of cation-ordered niobate structurally related to layered double tungstates AMW2O8, the compounds used as luminophors and active media in solid-state lasers. The pseudo-layered framework of the mineral can be derived from that of wolframite via substitution of W for Nb, whereas each second [FeO6] layer is replaced by [YO8] one. The resulting sequence of layers can be expressed as -[AO8]-[BO6]-[MO6]-[BO6]- leading to the formula AMB2O8 in which A = Y, Ln, Th, U4+, Ca; M = Fe3+, Mn2+; and B = Nb, Ta, Ti. The end-member formula of samarskte-(Y) is YFe3+Nb2O8 (approved by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association, memorandum 90-FH/18).


Samarskite Niobate Tantalate Double tungstates Crystal structure Rare earths Pegmatite Metamict state Phase transitions 



S.N.B and M.G.K thank Saint-Petersburg State University for financial support (Grant No. 3.42.741.2017). The authors thank the X-ray Diffraction Center of SPSU for providing instrumental and computational resources. We acknowledge Radek Škoda and Giancarlo Capitani for constructive reviews and discussion. We are also grateful to Milan Rieder for the editorial handling of the manuscript.

Supplementary material

269_2019_1034_MOESM1_ESM.pdf (144 kb)
Supplementary material 1 (PDF 143 kb)
269_2019_1034_MOESM2_ESM.cif (368 kb)
Supplementary material 2 (CIF 367 kb)
269_2019_1034_MOESM3_ESM.pdf (319 kb)
Supplementary material 3 (PDF 319 kb)


  1. Akimoto J, Uejima A, Sugitani Y (1986) Studies on annealing conditions for recovering the original samarskite structure. Kobutsugaku Zasshi 17:159–168 (in Japanese) Google Scholar
  2. Albino M, Pechev S, Veber P, Velazquez M, Josse M (2012) Cation ordering in the double tungstate LiFe(WO4)2. Acta Crystallogr C68:i7–i8Google Scholar
  3. Baales M, Joris O, Street M, Bittmann F, Weninger B, Wiethold J (2002) Impact of the late glacial eruption of the Laacher See volcano, Central Rhineland, Germany. Quat Res 58:273–288Google Scholar
  4. Bayliss P, Levinson AA (1988) A system of nomenclature for rare earth mineral species: revision and extention. Am Mineral 73:422–423Google Scholar
  5. Bonshtedt-Kupletskaya EM (1969) Samarskite. In: Chukhrov FV, Bonshtedt-Kupletskaya EM (eds) Minerals, II (3) (complex oxides, titanates, niobates, tantalates, antimonates, hydroxides). Nauka, Moscow, pp 331–339 (in Russian) Google Scholar
  6. Bräuer K, Kämpf H, Niedermann S, Strauch G (2013) Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): a multi-isotope (C, N, He, Ne, Ar) approach. Chem Geol 356:193–208Google Scholar
  7. Brese NE, O’Keefe DM (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197Google Scholar
  8. Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS rapid II diffractometer. Proc Russ Mineral Soc 146(3):104–107Google Scholar
  9. Brøgger WC (1906) Die Mineralien der Südnorwegischen Granitpegmatitgänge. I. Niobate, Tantalate. Titanate und Titanoniobate. Skrift Matem-Natur Klasse 6:138–151Google Scholar
  10. Bruker (2003) SAINT (ver. 7.60A). Bruker AXS Inc, MadisonGoogle Scholar
  11. Bruker (2014) TOPAS, Version 5.0. Bruker AXS Inc, MadisonGoogle Scholar
  12. Capitani GC, Mugnaioli E, Guastoni A (2016) What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the Garnet Codera dike pegmatite (Central Italian Alps). Am Mineral 101:1679–1690Google Scholar
  13. Cassedanne JP, Baptista A, Černý P (1985) Zircon hafnifère, samarskite et columbite d’une pegmatite du Rio Doce, Minas Gerais, Brésil. Can Mineral 23:563–567Google Scholar
  14. Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294Google Scholar
  15. Chukanov NV, Aksenov SM, Rastsvetaeva RK, Belakovskiy DI, Göttlicher J, Britvin SN, Möckel S (2012a) Christofschäferite, (Ce, La, Ca)4Mn2+(Ti, Fe3+)3(Fe3+, Fe2+, Ti)(Si2O7)2O8, a new chevkinite-group mineral from the Eifel area, Germany. New Data Miner 47:33–42 (in Russian) Google Scholar
  16. Chukanov NV, Blass G, Pekov IV, Belakovskiy DI, Van KV, Rastsvetaeva RK, Aksenov SM (2012b) Perrierite-(La), (La, Ce, Ca)4Fe2+(Ti, Fe)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany. Geol Ore Depos 54:647–655Google Scholar
  17. Chukanov NV, Blass G, Zubkova NV, Pekov IV, Pushcharovskii DYu, Prinz H (2013) Hydroxymanganopyrochlore: a new mineral from the Eifel Volcanic Region, Germany. Dokl Earth Sci 449(1):342–345 (in Russian) Google Scholar
  18. Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer Ch, Vigasina M, Van K (2014) Laachite, (Ca, Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111Google Scholar
  19. Della Ventura G, Bellatreccia F, Williams CT (2000) Zirconolite with significant REEZrNb(Mn, Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. Can Mineral 38:57–65Google Scholar
  20. Demarçay E-A (1901) Sur un nouvel élément l’europium. Compt Rend 132:1484–1486Google Scholar
  21. Dill HG (2015) Pegmatites and aplites: their genetic and applied ore geology. Ore Geol Rev 69:417–561Google Scholar
  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341Google Scholar
  23. Donakowski MD, Görne A, Vaughey JT, Poeppelmeier KR (2013) J Am Chem Soc 135:9898–9906Google Scholar
  24. Ellsworth HV (1928) A mineral related to samarskite from the Woodcox Mine, Hybla Ontario. Am Mineral 13:63–65Google Scholar
  25. Engelhaupt B, Schüller W (2015) Samarskit-(Y). In: Engelhaupt B, Schüller W (eds) Mineral Reich Eifel. Christian Weise Verlag, München, p 249Google Scholar
  26. Ercit TS (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y, REE, U, Th)-(Nb, Ta, Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303Google Scholar
  27. Ercit TS, Černý P (1988) The crystal structure of foordite. Can Mineral 26:899–903Google Scholar
  28. Ercit TS, Černý P, Hawthorne FC, McCammon CA (1992) The wodginite group. II. Crystal chemistry. Can Mineral 30:613–631Google Scholar
  29. Ewing RC (1975) The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: discussion. Am Mineral 60:728–733Google Scholar
  30. Ferguson RB, Hawthorne FC, Grice JD (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. II. Wodginite. Can Mineral 14:550–560Google Scholar
  31. Galliski MA, Márquez-Zavalía MF, Černý P, Lira R, Roberts AC, Bernhardt H-J (2016) Achalaite, Fe2+TiNb2O8, a new member of the wodginite group from the La Calandria granitic pegmatite, Córdoba, Argentina. Can Mineral 54:1043–1052Google Scholar
  32. Grice JD, Ferguson RB, Hawthorne FC (1976) The crystal structure of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. I. Tantalite and ixiolite. Can Mineral 14:550–560Google Scholar
  33. Grigor’ev DP (1945) Regular intergrowth of samarskite and columbite from the Ilmeny Mountains. Zap Vsesoyuzn Mineral Obsch 74:57–61 (in Russian) Google Scholar
  34. Hanson SL, Simmons WB Jr, Falster AU (1998) Nb–Ta–Ti oxides in granitic pegmatites from the Topsham pegmatite district, southern Maine. Can Mineral 36:601–608Google Scholar
  35. Hanson SL, Simmons WB, Falster AU, Foord EE, Lichte FE (1999) Proposed nomenclature for samarskite-group minerals: new data on ishikawaite and calciosamarskite. Mineral Mag 63:27–36Google Scholar
  36. Hermann R (1856) Untersuchungen über Niobium. J Prakt Chem 68:65–97Google Scholar
  37. Keller C (1962) Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Z Anorg Allg Chem 318:89–106Google Scholar
  38. Kim JS, Lee JC, Cheon CI, Kang H-J (2006) Crystal structures and low temperature cofiring ceramic property of (1–x)(Li, RE)W2O8-xBaWO4 ceramics (RE = Y, Yb). Jpn J Appl Phys 45:7397–7400Google Scholar
  39. Kimura K (1922) Ishikawaite: a new mineral from Ishikawa, Iwaki. J Geol Soc Tokyo 29:316–320 (in Japanese) Google Scholar
  40. Kjellman J (2017) ABC2O8—a new look on the crystal chemistry and classification of samarskite group minerals. In: PEG2017: proc. 8th int. symp. granitic pegmatites, pp 64–67Google Scholar
  41. Klevtsov PV, Klevtsova RF (1970) Single-crystal synthesis and investigation of the double tungstates NaR3+(WO4)2, where R3+ = Fe, Sc, Ga and In. J Solid State Chem 2:278–282Google Scholar
  42. Kolitsch U, Kristiansen R, Raade G, Tillmanns E (2010) Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway. Eur J Mineral 22:309–316Google Scholar
  43. Kolitsch U, Mills SJ, Miyawaki R, Blass G (2012) Ferriallanite-(La), a new member of the epidote supergroup from the Eifel, Germany. Eur J Mineral 24:741–747Google Scholar
  44. Komkov AI (1965) Crystal structure and chemical composition of samarskite. Dokl Acad Sci USSR Earth Sci Sect 160:127–129Google Scholar
  45. Konovalenko SI, Ananyev SA, Chukanov NV, Rastsvetaeva RK, Aksenov SM, Baeva AA, Gainov RR, Vagizov FG, Lopatin ON, Nebera TS (2015) A new mineral species rossovskyite, (Fe3+, Ta)(Nb, Ti)O4: crystal chemistry and physical properties. Phys Chem Miner 42:825–833Google Scholar
  46. Lagatsky AA, Han X, Serrano MD, Cascales C, Zaldo C, Calvez S, Dawson MD, Gupta JA, Brown CTA, Sibbett W (2010) Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm. Opt Lett 35:3027–3029Google Scholar
  47. Le Flem G, Salmon R, Hagenmuller P (1969) Cation distribution in an ordered wolframite-type structure. Compt Rend Acad Sci C 268:1431–1434Google Scholar
  48. Lecoq de Boisbaudran P-É (1879) Recherches sur le samarium, radical d’une terre nouvelle extradite de la samarskite. Compt Rend Acad Sci 89:212–214Google Scholar
  49. Lecoq de Boisbaudran P-É (1886) Le Yα de M. de Marignac est dèfinitivement nomme gadolinium. Compt Rend Acad Sci 102:902Google Scholar
  50. Maier AA, Provotorov MV, Balashov VA (1973) Double molybdates and tungstates of the rare earths and alkali metals. Russ Chem Rev 42:822–833Google Scholar
  51. Makarochkin BA (1982) Chemical composition of accessory titano-tantalo-niobates of Ilmen Mountains. U.S.S.R. Academy of Sciences, Sverdlovsk (in Russian) Google Scholar
  52. Malczewski D, Grabias A (2008) 57Fe Mössbauer spectroscopy and X-ray diffraction study of complex metamict minerals. Part II. Hyperfine Interact 186:75–81Google Scholar
  53. Malczewski D, Grabias A, Dercz G (2010) 57Fe Mössbauer spectroscopy of radiation damaged samarskites and gadolinites. Hyperfine Interact 195:85–91Google Scholar
  54. Marignac MC (1880) Sur les terres de la samarskite. Ann Chim Phys 20:535–557Google Scholar
  55. Miyake C, Ohana S, Imoto S (1987) Oxidation states of U and Nb in U–Nb–O ternary oxides by means of magnetic susceptibility, XPS and ESR. Inorg Chim Acta 140:133–135Google Scholar
  56. Nakai I, Akimoto J, Imafuku M, Miyawaki R, Sugitani Y, Koto K (1987) Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses. Phys Chem Mineral 15:113–124Google Scholar
  57. Nilssen B (1970) Samarskites. Chemical composition, formula and crystalline phases produced by heating. Norsk Geol Tidsskr 50:357–373Google Scholar
  58. Ostwald W (1897) Studien über die Bildung und Umwandlung fester Koerper. Z Phys Chem 22:289–330Google Scholar
  59. Palache C, Berman H, Frondel C (1944) The system of mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837–1892, volume I: elements, sulfides, sulfosalts, oxides, 7th edn. Wiley, New YorkGoogle Scholar
  60. Papoutsa AD, Pe-Piper G (2013) The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia. Am Mineral 98:444–462Google Scholar
  61. Pekov IV (1998) Minerals first discovered on the Territory of the Former Soviet Union. OP, MoscowGoogle Scholar
  62. Pieczka A, Szuszkiewicz A, Szełęg E, Ilnicki S, Nejbert K, Turniaiak K (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. Can Mineral 52:303–319Google Scholar
  63. Pollnau M, YaE Romanyuk, Gardillou F, Borca CN, Griebner U, Rivier S, Petrov V (2007) Double tungstate lasers: from bulk toward on-chip integrated waveguide devices. IEEE J Select Top Quantum Electron 13:661–671Google Scholar
  64. Polyakov VO (2000) Samarskite. In: Yushkin NP (ed) Mineralogy of urals. Oxides and hydroxides. Part. I. Branch of Russian Academy of Sciences, Miass-Yekaterinburg (in Russian) Google Scholar
  65. Polyakov VO, Zhdanov VF, Nishanbaev TP (1980) New receipts of the museum of the Ilmeny state reserve. In: Mineralogicheskie issledovaniya gidrotermalitov Urala, Sverdlovsk, pp 52–58 (in Russian) Google Scholar
  66. Popov VA, Popova VI (2006) Ilmeny Mountains: mineralogy of pegmatites. In: Mineralogical almanac, vol 9. Association Ecost and Ocean Pictures Ltd, Littleton, p 151Google Scholar
  67. Popov VA, Popova VI, Polyakov VO (2007) Regular intergrowths of minerals in pegmatites from the Il’meny Mountains. Geol Ore Depos 49:573–582Google Scholar
  68. Rose G (1839) Beschreibung einiger neuen Mineralien des Urals. Ann Phys 124(12):551–573Google Scholar
  69. Rose H (1847) Ueber die Zusammensetzung des Uranotantals und des Columbits vom Ilmengebirge in Sibirien. Ann Phys 147(5):157–169Google Scholar
  70. Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8Google Scholar
  71. Shibata Y, Kimura K (1922) Chemical investigation of Japanese minerals containing rarer elements. IV. Samarskite and an unnamed mineral from Ishikawa, Iwaki Province. Nippon Kagaku Kaishi 43:301–312Google Scholar
  72. Simmons WB, Hanson SL, Falster AU (2006) Samarskite-(Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson County, Colorado. Can Mineral 44:1119–1125Google Scholar
  73. Skomurski FN, Ilton ES, Engelhard MH, Arey BW, Rosso KM (2011) Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochim Cosmochim Acta 75:7277–7290Google Scholar
  74. Sugitani Y, Suzuki Y, Nagashima K (1984) Recovery of the original samarskite structure by heating in a reducing atmosphere. Am Mineral 69:377–379Google Scholar
  75. Sugitani Y, Suzuki Y, Nagashima K (1985) Polymorphism of samarskite and its relationship to other structurally related Nb-Ta oxides with the α-PbO2 structure. Am Mineral 70:856–866Google Scholar
  76. Tomašić N, Gajović A, Bermanec V, Linarić MR, Su D, Škoda R (2010) Preservation of the samarskite structure in a metamict ABO4 mineral: a key to crystal structure identification. Eur J Mineral 22:435–442Google Scholar
  77. Uher P, Ondrejka M, Konečny P (2009) Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineral Mag 73:1009–1025Google Scholar
  78. Van Santen RA (1984) The ostwald step rule. J Phys Chem 88:5768–5769Google Scholar
  79. Warner JK, Ewing RC (1993) Crystal chemistry of samarskite. Am Mineral 78:419–474Google Scholar
  80. Zharikov EV, Zaldo C, Díaz F (2009) Double tungstate and molybdate crystals for laser and nonlinear optical applications. MRS Bull 34:271–276Google Scholar
  81. Zitzer S, Schleifenbaum F, Schleid T (2014) Na2Y3Cl3[TeO3]4: synthesis, crystal structure and spectroscopic properties of the bulk material and its luminescent Eu3+-doped samples. Z Naturforsch B 69:150–158Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Crystallography, Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nanomaterials Research Center, Kola Science CenterRussian Academy of SciencesApatityRussia
  3. 3.Faculty of GeologyMoscow State UniversityMoscowRussia
  4. 4.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  5. 5.MayenGermany
  6. 6.AdenauGermany
  7. 7.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations