Skip to main content

Advertisement

Log in

Equations of state of Co2TiO4-Sp, Co2TiO4-CM, and Co2TiO4-CT, and their phase transitions: an experimental and theoretical study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Co2TiO4 spinel (Co2TiO4-Sp) was synthesized at 1573 K and room P by heating in an argon atmosphere for 72 h, and quasi-hydrostatically compressed to ~ 24 GPa using a diamond-anvil cell in conjunction with a synchrotron X-ray radiation (ambient T). We found that the Co2TiO4-Sp was stable up to ~ 21 GPa and transformed to a new phase at higher P. With some theoretical simulations, we revealed that this new phase adopted the CaMn2O4-type structure (Co2TiO4-CM), which might further transform to the CaTi2O4-type structure (Co2TiO4-CT) at ~ 35 GPa. The isothermal bulk modulus (KT) was experimentally obtained as 175.5(36) GPa for the Co2TiO4-Sp and 161(7) GPa for the Co2TiO4-CM, with its first pressure derivative \(K_{{\text{T}}}^{'}\) as 2.8(5) and 7.3(8), respectively. Furthermore, the KT was theoretically constrained (the GGA method) as 138(3) GPa for the Co2TiO4-CM and 196.8(14) GPa for the Co2TiO4-CT, with the \(K_{{\text{T}}}^{'}\) as 7.6(3) and 5.0(1), respectively. Consequently, the Co2TiO4-CM is ~ 12.3% denser than the Co2TiO4-Sp at ~ 21 GPa, whereas the Co2TiO4-CT is just ~ 0.8% denser than the Co2TiO4-CM at ~ 35 GPa. The spinel and post-spinel phase assemblages for the Co2TiO4 composition at some high T have been tentatively deduced as Co2TiO4-Sp, CoO-B1 (NaCl-type structure) + CoTiO3-Ilm (ilmenite-type structure), 2CoO-B1 + TiO2-α-PbO2 (α-PbO2-type structure), Co2TiO4-CM and Co2TiO4-CT, as P increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akimoto S, Syono Y (1967) High-pressure decomposition of some titanate spinels. J Chem Phys 47:1813–1817

    Article  Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60

    Google Scholar 

  • Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Planet Int 25:140–158

    Article  Google Scholar 

  • Bertaut EF, Blum P (1956) Détermination de la structure de Ti2CaO4 par la Méthode Self-Consistante d’Approche Directe. Acta Cryst 9:121–126

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Decker BF, Kasper JS (1957) The structure of calcium ferrite. Acta Cryst 10:332–337

    Article  Google Scholar 

  • Dube GR, Darshane VS (1991) X-ray, electrical and catalytic studies of the system CoFe2O4-Co2TiO4. Bull Chem Soc Jpn 64:2449–2453

    Article  Google Scholar 

  • Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys Rev B 57:1505

    Article  Google Scholar 

  • Errandonea D (2014) AB2O4 compounds at high pressures. In: Manjon FJ, Tiginyanu I, Ursaki V (eds) Pressure-induced phase transitions in AB2X4 chalcogenide compounds, vol 189. Springer, New York, pp 55–62

    Chapter  Google Scholar 

  • Finkelstein GJ, Dera PK, Jahn S, Oganov AR, Holl CM, Meng Y, Duffy TS (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am Mineral 99:35–43

    Article  Google Scholar 

  • Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176

    Article  Google Scholar 

  • Giesber HG, Pennington WT, Kolis JW (2001) Redetermination of CaMn2O4. Acta Cryst 57:329–330

    Article  Google Scholar 

  • Guo Q, Mao HK, Hu J, Shu J, Hemley RJ (2002) The phase transitions of CoO under static pressure to 104 GPa. J Phys Condens Matter 14:11369–11374

    Article  Google Scholar 

  • Hagenmuller P, Guillaud C, Lecerf A, Rault M, Villers G (1966) Préparation, étude cristallographique et magnétique de quelques séries d’oxydes à structure spinelle de formule Mn1 + xM2(1–x)TixO4. Bull Soc Chim Fr 8:2589–2596

    Google Scholar 

  • Hazen RM, Yang H (1999) Effects of cation substitution and order-disorder on P-V-T equations of state of cubic spinels. Am Mineral 84:1956–1960

    Article  Google Scholar 

  • He Q, Liu X, Hu X, Deng L, Chen Z, Li B, Fei Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Mineral 39:219–226

    Article  Google Scholar 

  • Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893

    Article  Google Scholar 

  • Hirota K, Inoue T, Mochida N, Ohtsuka A (1990) Study of germanium spinels (part 3). J Ceram Soc Jpn 98:976–986

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Magn 61:65–77

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1987) Phase transformation in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani M, Syono Y (eds) High-pressure research in mineral physics. Terra/American Geophys Union, Tokyo/Washington, pp 221–230

    Google Scholar 

  • Ita J, Stixrude L (1992) Petrology, elasticity and composition of the mantle transition zone. J Geophys Res 97:6849–6866

    Article  Google Scholar 

  • Ito E, Matsui Y (1979) High-pressure transformations in silicates, germinates and titanates with ABO3 stoichiometry. Phys Chem Mineral 4:265–273

    Article  Google Scholar 

  • Kidoh K, Tanaka K, Marumo F (1984) Electron density distribution in an ilmenite-type crystal of cobalt(II) titanium(IV) trioxide. Acta Cryst B40:92–96

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138

    Article  Google Scholar 

  • Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys-Condens Mater 6:8245–8257

    Article  Google Scholar 

  • Liebermann RC, Jackson I, Ringwood AE (1977) Elasticity and phase equilibria of spinel disproportionation reactions. Geophys J R Astron Soc 50:553–586

    Article  Google Scholar 

  • Lin JF, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275

    Article  Google Scholar 

  • Liu L (1976) The post-spinel phases of forsterite. Nature 262:770–772

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: significance of carbonate. Am Mineral 96:74–80

    Article  Google Scholar 

  • Liu X, Xiong Z, Chang L, He Q, Wang F, Shieh SR, Wu C, Li B, Zhang L (2016a) Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci 1:28–47

    Article  Google Scholar 

  • Liu X, Xiong Z, Shieh SR, He Q, Deng L, Zhang Y, Chang L, Wang F, Hong X, Chen Z (2016b) Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1 – xMnx)Cr2O4 spinel solid solutions, and its origin and implication. Solid Earth Sci 1:89–100

    Article  Google Scholar 

  • Lv M, Liu X, Shieh SR, Xie T, Wang F, Prescher C, Prakapenka VB (2016) Equation of state of synthetic qandilite Mg2TiO4 at ambient temperature. Phys Chem Mineral 43:301–306

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • Millard RL, Peterson RC, Hunter BK (1995) Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and rietveld refinement of X-ray diffraction data. Am Mineral 80:885–896

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • O’Neill HSTC, Navrotsky A (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. Am Mineral 68:181–194

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 430:445–448

    Article  Google Scholar 

  • Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res 35:223–230

    Article  Google Scholar 

  • Prosnikov MA, Molchanova AD, Dubrovin RM, Boldyrev KN, Smirnov AN, Davydov VY, Balbashov AM, Popova MN, Pisarev RV (2016) Lattice dynamics and electronic structure of cobalt–titanium spinel Co2TiO4. Phys Solid State 58:2516–2522

    Article  Google Scholar 

  • Rankin RB, Campos A, Tian H, Siriwardane R, Roy A, Spivey JJ, Sholl DS, Johnson JK (2008) Characterization of bulk structure in zinc orthotitanate: a density functional theory and EXAFS investigation. J Am Ceram Soc 91:584–590

    Article  Google Scholar 

  • Rigden SM, Jackson I (1991) Elasticity of germanate and silicate spinels at high pressure. J Geophys Res 96:9999–10006

    Article  Google Scholar 

  • Rigden SM, Jackson I, Niesler H, Ringwood AE, Liebermann RC (1988) Pressure dependence of the elastic wave velocities from Mg2GeO4 spinel to 3 GPa. Geophys Res Lett 15:605–608

    Article  Google Scholar 

  • Ringwood AE, Reid AF (1968) High pressure transformations of spinels (I). Earth Planet Sci Lett 5:245–250

    Article  Google Scholar 

  • Romeijn FC (1953) Physical and crystallographical properties of some spinels. Philips Res Rep 8:304–320

    Google Scholar 

  • Sakamoto N (1962) Magnetic properties of cobalt titanate. J Phys Soc Jpn 17:99–102

    Article  Google Scholar 

  • Sedler IK, Feenstra A, Peters T (1994) An X-ray powder diffraction study of synthetic (Fe, Mn)2TiO4 spinel. Eur J Mineral 6:873–885

    Article  Google Scholar 

  • Simons PY, Dachille F (1967) The structure of TiO2 II, a high-pressure phase of TiO2. Acta Cryst 23:334–336

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umenoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Verwey EJW, Heilmann EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. cation arrangement in spinels. J Chem Phys 15:174–180

    Article  Google Scholar 

  • Wang Z, Saxena SK, Zha CS (2002) In situ X-ray diffraction and Raman spectroscopy of pressure-induced phase transformation in spinel Zn2TiO4. Phys Rev B 66:024103

    Article  Google Scholar 

  • Wechsler BA, Von Dreele RB (1989) Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Cryst B 45:542–549

    Article  Google Scholar 

  • Xiong Z, Liu X, Shieh SR, Wang F, Wu X, Hong X, Shi Y (2015) Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature. Phys Chem Mineral 42:171–177

    Article  Google Scholar 

  • Yamanaka T, Uchida A, Nakamoto Y (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am Mineral 93:1874–1881

    Article  Google Scholar 

  • Yamanaka T, Mine T, Asogawa S, Nakamoto Y (2009) Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature. Phys Rev B 80:134120

    Article  Google Scholar 

  • Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3 – xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Mineral 98:736–744

    Article  Google Scholar 

  • Zhang L, Meng Y, Yang W, Wang L, Mao WL, Zeng QS, Jeong JS, Wagner AJ, Mkhoyan KA, Liu W, Xu R, Mao HK (2014) Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 344:877–882

    Article  Google Scholar 

  • Zhang Y, Liu X, Xiong Z, Zhang Z (2016) Compressional behavior of MgCr2O4 spinel from first-principles simulation. Sci Chin Earth Sci 59:989–996

    Article  Google Scholar 

  • Zhang Y, Liu X, Shieh SR, Bao X, Xie T, Wang F, Zhang Z, Prescher C, Prakapenka VB (2017) Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study. Phys Chem Mineral 44:109–123

    Article  Google Scholar 

  • Zhou P, Wu G, Zuo C, Li L, Zheng Z, Zhang W, Pan G, Wang F (2015) Study on electronic structures and mechanical properties of new predicted orthorhombic Mg2SiO4 under high pressure. J Alloys Compd 630:11–22

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments on our manuscript, and Dr. T. Tsuchiya for his criticizing comments on and his editorial handling of our paper. The high-P work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF Grant EAR-1128799 and DOE Grant DE-FG02-94ER14466. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Financially, this study was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000), by the DREAM project of MOST, China (Grant No. 2016YFC0600408), and by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1299 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, X., Shieh, S.R. et al. Equations of state of Co2TiO4-Sp, Co2TiO4-CM, and Co2TiO4-CT, and their phase transitions: an experimental and theoretical study. Phys Chem Minerals 46, 571–582 (2019). https://doi.org/10.1007/s00269-019-01023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01023-3

Keywords

Navigation