Skip to main content
Log in

Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Anhydrous alkali copper sulfates constitute the most abundant group of mineral species from the Second Scoria Cone of the Great Tolbachik Fissure Eruption (1975–1976), a location being renowned for its great mineral diversity. Euchlorine, ideally KNaCu3O(SO4)3, is the prevalent mineral in the hot sulfate-rich zones of the fumaroles. In this work, its thermal expansion and hydration/dehydration behavior have been studied. The results of a structure refinement from new single-crystal diffraction data are also reported, and a description of the structure based on anion-centered coordination polyhedra is given. The strongly anisotropic character of the thermal expansion of euchlorine remains essentially unchanged up to its decomposition. The strongest α11 expansion is observed approximately perpendicular to the alkali interlayer of the structure, whereas the minimal α22 and α33 thermal expansion coefficients are parallel to the plane of {Cu3O(SO4)3}2− layers. Hydration experiments controlled by X-ray powder diffraction reveal a very complex behavior with multicomponent phase formation. Remarkably, upon heating stepwise dehydration occurs, whereby the complex mixture of hydrated sulfates gradually reverses and becomes again essentially single-phased anhydrous euchlorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bacon GE, Titterton DH (1975) Neutron diffraction studies of CuSO4(H2O)5 und CuSO4(D2O)5. Z Kristallogr Cryst Mater 141:330–341

    Article  Google Scholar 

  • Bruker (2017) TOPAS. Version 6. Bruker AXS, Karlsruhe

    Google Scholar 

  • Bruker-AXS (2017) APEX2. Version 2014.11-0, Madison, Wisconsin, USA

  • Chou I-M, Seal RR, Wang A (2013) The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. J Asian Earth Sci 62:734–758

    Article  Google Scholar 

  • Cloutis EA, Craig MA, Mustard JF, Kruzelecky RV, Jamroz WR, Scott A, Bish DL, Poulet F, Bibring J-P, King PL (2007) Stability of hydrated minerals on Mars. Geoph Res Lett 34:L20202

    Article  Google Scholar 

  • Domnina MI, Filatov SK, Zyuzyukina II, Vergasova LP (1986) Thermal deformation of tenorite. Inorg Mater 22:1992–1996

    Google Scholar 

  • Effenberger H (1985) Cu2O(SO4), dolerophanite: Refinement of the crystal structure with a comparison of OCu(II)4 tetrahedra in inorganic compounds. Monatsh Chem 116:927–931

    Article  Google Scholar 

  • Filatov SK, Semenova TF, Vergasova LP (1992) Types of polymerization of tetrahedra [OCu4]6+ in compounds with additional atoms of oxygen. Dokl Akad Nauk SSSR 322:536–539

    Google Scholar 

  • Firsova VA, Bubnova RS, Filatov SK (2011) Program for the thermal expansion tensor determination for crystalline materials. Institute of silicate chemistry of Russian Academy of Science, St. Petersburg

    Google Scholar 

  • Giester G, Zemann J (1987) The crystal structure of the natrochalcite-type compounds Me+Cu2(OH)(ZO4)2H2O (Me+ = Na, K, Rb; Z = S, Se), with special reference to the hydrogen bonds. Z Kristallogr 179:431–442

    Article  Google Scholar 

  • Giester G, Lengauer CL, Redhammer G (1994) Characterization of the FeSO4·H2O–CuSO4·H2O solid-solution series, and the nature of poitevinite, (Cu,Fe)SO4·H2O. Can Mineral 32:873–884

    Google Scholar 

  • Hawthorne FC, Ferguson RB (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallogr B31:1753–1755

    Article  Google Scholar 

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720

    Article  Google Scholar 

  • Krivovichev SV (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineral Mag 77:275–326

    Article  Google Scholar 

  • Krivovichev SV, Semenova TF, Filatov SK (1998) High-temperature crystal chemistry of georgbokiite. Crystallogr Rep 43:1003–1006

    Google Scholar 

  • Krivovichev SV, Filatov SK, Burns PC (2002) The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. Can Mineral 40:1185–1190

    Article  Google Scholar 

  • Krivovichev SV, Mentré O, Siidra OI, Colmont M, Filatov SK (2013) Anion-centered tetrahedra in inorganic compounds. Chem Rev 113:6459–6535

    Article  Google Scholar 

  • Merlino S, Perchiazzi N, Franco D (2003) Brochantite, Cu4SO4(OH)6: OD character, polytypism and crystal structures. Eur J Mineral 15:267–275

    Article  Google Scholar 

  • Nazarchuk EV, Siidra OI, Agakhanov AA, Lukina EA, Avdontseva EY, Karpov GA (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulphate mineral from the Tolbachik volcano. Mineral Mag. https://doi.org/10.1180/minmag.2017.081.089 (in press)

    Google Scholar 

  • Paufler P, Filatov SK, Bubnova RS, Krzhizhanovskaya MG (2014) Synthesis and thermal behaviour of pauflerite, β-VOSO4, and its α-modification. Z Kristallogr Cryst Mater 229:725–729

    Article  Google Scholar 

  • Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Kasatkin AV, Kuznetsov AM, Pushcharovsky DY (2013) Kobyashevite, Cu5(SO4)2(OH)6·4H2O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. Mineral Petrol 107:201–210

    Article  Google Scholar 

  • Pekov IV, Siidra OI, Chukanov NV, Yapaskurt VO, Belakovskiy DI, Murashko MN, Sidorov EG (2014a) Kaliochalcite, KCu2(SO4)2[(OH)(H2O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 26:597–604

    Article  Google Scholar 

  • Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Lykova IS, Savelyev DP, Sidorov EG, Pushcharovsky DYu (2014b) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik Volcano, Kamchatka, Russia. Can Mineral 52:699–716

    Article  Google Scholar 

  • Portales RL, Jiménez GC, Michel HC, Amador DOR, Mikuš KV, Kump P, Rosa G (2015) Understanding copper speciation and mobilization in soils and mine tailings from “Mineral La Aurora” in central Mexico: contributions from Synchrotron techniques. B Soc Geol Mex 67:447–456

    Google Scholar 

  • Robinson DJ, Kennard CHL (1972) Potassium hexa-aquacopper(II) sulfate, CuH12K2O14S2 (neutron). Cryst Struct Commun 1:185–188

    Google Scholar 

  • Scordari F, Stasi F (1990) The crystal structure of euchlorine, NaKCu3O(SO4)3. Neues Jahrb Mineral Abh 161:241–253

    Google Scholar 

  • Sheldrick GM (2015) New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallogr C71:3–8

    Google Scholar 

  • Siidra OI, Nazarchuk EV, Zaitsev AN, Lukina EA, Avdontseva EY, Vergasova LP, Vlasenko NS, Filatov SK, Turner R, Karpov GA (2017) Copper oxosulphates from fumaroles of Tolbachik Vulcano: puninite, Na2Cu3O(SO4)3—a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. Eur J Mineral 29:499–510

    Article  Google Scholar 

  • Siidra OI, Nazarchuk EV, Agakhanov AA, Lukina EA, Zaitsev AN, Turner R, Filatov SK, Pekov IV, Karpov GA, Yapaskurt VO (2018a) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Miner Petrol 112:123–134

    Article  Google Scholar 

  • Siidra OI, Lukina EA, Nazarchuk EV, Depmeier W, Bubnova RS, Agakhanov AA, Avdontseva EY, Filatov SK, Kovrugin VM (2018b) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineral Mag 82:257–274

    Article  Google Scholar 

  • Starova GL, Filatov SK, Fundamenskii VS, Vergasova LP (1991) The crystal structure of fedotovite, K2Cu3O(SO4)3. Mineral Mag 55:613–616

    Article  Google Scholar 

  • Szynkiewicz A, Borrok DM, Vaniman DT (2014) Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars. Earth Planet Sci Lett 393:14–25

    Article  Google Scholar 

  • Ting VP, Henry PF, Schmidtmann M, Wilson CC, Weller MT (2009) In situ neutron powder diffraction and structure determination in controlled humidities. Chem Commun 2009:7527–7529

    Article  Google Scholar 

  • Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Gerald Giester and Christian Lengauer for helpful suggestions which improved the manuscript. This work was financially supported by the Russian Science Foundation through the grant 16-17-10085. Technical support by the SPbSU X-ray Diffraction and Geomodel Resource Centers is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg I. Siidra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3917 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siidra, O.I., Borisov, A.S., Lukina, E.A. et al. Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3. Phys Chem Minerals 46, 403–416 (2019). https://doi.org/10.1007/s00269-018-1011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-1011-9

Keywords

Navigation