Skip to main content
Log in

On the greenish-yellow color of natural Brazilian titanite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Natural greenish-yellow titanites from two localities in Brazil (Bananal/Capelinha, MG and Xambioá, TO) were characterized by electron paramagnetic resonance (EPR) and optical absorption. Along with vanadyl ions (VO2+) substituting Ti4+, two other paramagnetic centers were identified: the Fe3+ and the Mn2+. For the VO2+, the principal values and orientations of the g and A tensors were derived from a careful analysis of the angular dependence of the EPR spectra. The obtained results, although different to previously reported data, still support the model for the VO2+ bonds to the nearest oxygen (O1) in the TiO6-distorted octahedra. In addition, the titanite optical absorption spectra were analyzed, and the yellow color was ascribed to Fe3+ ↔ O2− ligand–metal charge transfer transitions (LMCT) in the near-ultraviolet, extending to the violet and blue spectral ranges. The VO2+ center seen by EPR was in low concentration and had no visible effect on the color. Finally, γ-irradiation up to 200 kGy and thermal treatments in oxidizing/reducing atmospheres up to 600–700 °C also had no big influence on the dominant yellow color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balitsky VS, Balitskaya OV (1986) The amethyst-citrine dichromatism in quartz and its origin. Phys Chem Miner 13:415–421

    Google Scholar 

  • Beirau T, Mihailova B, Malcherek T, Paulmann C, Bismayer U, Groat LA (2014) Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. Can Mineral 52:91–100

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cassedanne JP, Cassedanne JO (1971) Note sur le gisement de sphène du Campo doBoa (Municipe de Capelinha–État de Minas Gerais). An Acad Bras Cienc 43:399–405

    Google Scholar 

  • Chaves MLSC, Tolentino EL Jr, Dias CHD, Romano AW (2017) Geologia, mineralogia, inclusões fluidas e gênese dos depósitos de titanita-epidoto de Capelinha, Minas Gerais. Geologia USP Série Científica 17:3–18

    Article  Google Scholar 

  • De Biasi RS, Fernandes AAR (1984) Measurement of small concentration of Cr and Mn in MgO using EPR. J Am Ceram Soc 67:C173–C175

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, vol 2. Longman Scientific & Technical, Hong Kong

    Google Scholar 

  • Dias LN, Pinheiro MVB, Krambrock K (2009) Radiation-induced defects in euclase: formation of O hole and Ti3+ electron centers. Phys Chem Miner 36:519–525

    Article  Google Scholar 

  • Dias LN, Pinheiro MVB, Moreira RL, Krambrock K, Guedes KJ, Menezes Filho LAD, Karfunkel J, Schnellrath J, Scholz R (2011) Spectroscopic characterization of transition metal impurities in natural montebrasite/amblygonite. Am Mineral 96:42–52

    Article  Google Scholar 

  • Farrell EF, Newnham RE (1965) Crystal-field spectra of chrysoberyl alexandrite, peridot andsinhalite. Am Miner 50:1972–1981

    Google Scholar 

  • Faye GH, Manning PG, Gosselin JR, Tremblay RJ (1974) The optical absorption spectra of tourmaline; importance of charge-transfer processes. Can Mineral 12:370–380

    Google Scholar 

  • Fritsch E, Rossman GR (1988) An update on color in gems. Part 2: colors involving multiple atoms and color centers. Gems Gemol 24:3–15

    Article  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. ChemGeol 172:131–148

    Google Scholar 

  • Ghose S, Ito Y, Hatch DM (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. Phys Chem Miner 17:591–603

    Article  Google Scholar 

  • Higgins JB, Ribbe PH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888

    Google Scholar 

  • Hollabaugh CL, Foit FF (1984) The crystal structure of an Al-rich titanite from Grisons, Switzerland. Am Mineral 69:725–732

    Google Scholar 

  • Holuj F, Manoogian A (1968) EPR of Mn++ in spodumene. II. Heated crystals. Can J Phys 46:303–306

    Article  Google Scholar 

  • Jaffe HW (1947) Reexamination of sphene (titanite). Am Mineral 32:637–642

    Google Scholar 

  • Klein C (2002) Manual of mineral science. Wiley, New York

    Google Scholar 

  • Klein C, Hurlbut CS (1999) Manual of mineralogy. Wiley, New York

    Google Scholar 

  • Krambrock K, Pinheiro MVB, Guedes KJ, Medeiros SM, Schweizer S, Spaeth JM (2004) Correlation of irradiation-induced yellow color with the Ohole center in tourmaline. Phys Chem Miner 31:168–175

    Article  Google Scholar 

  • Krambrock K, Guedes KJ, Pinheiro MVB (2008) Chromium and vanadium impurities in natural green euclase and their relation to the color. Phys Chem Miner 35:409–415

    Article  Google Scholar 

  • Kunz M, Xirouchakis D, Lindsley DH, Hausermann D (1996) High-pressure phase transition in titanite (CaTiOSiO4). Am Mineral 81:1527–1530

    Article  Google Scholar 

  • Lehmann G (1978) Solid-state photochemistry—a method of generating unusual valence states. Angew Chem Ger Edit 17:89–97

    Article  Google Scholar 

  • Marfunin AS, Bershov LS, Mineeva RM (1966) La résonance paramagnétique électronique de l’ion VO2+ dans le sphène et l’apophyllite et de l’ionMn2+ dans la tremolite, l’apophyllite et la scheelite. B Soc Fr Mineral Cr 89:177–183

    Google Scholar 

  • McGavin DG, Palmer RA, Tennant WC, Devine SD (1982) Use of ultrasonically modulated electron resonance to study S-state ions in mineral crystal: Mn2+ and Fe3+ in tremolite. Phys Chem Miner 8:200–205

    Article  Google Scholar 

  • Salje E, Schmidt C, Bismayer U (1993) Structural phase transition in titanite, CaTiSiO5: a Raman spectroscopic study. Phys Chem Miner 19:502–506

    Article  Google Scholar 

  • Sarma KBN, Runny BJ, Lakshman SVJ (1982) Absorption spectra of Ti3+ in titanite. Proc Indian Nat Sci Acad 48:636–641

    Google Scholar 

  • Schmetzer K, Bosshard G, Hänni HA (1982) Naturfarbene und behandeltegelbe und orange-braune Sapphire. Zeitschrift der Deutschen Gemmologischen Gesellschaft 31:265–279

    Google Scholar 

  • Shaffer JS, Farach HA, Poole CP Jr (1976) Electron spin resonance study of manganese-doped spinel. Phys Rev B13:1869–1875

    Article  Google Scholar 

  • Silva DN, Guedes KJ, Pinheiro MVB, Spaeth JM, Krambrock K (2005) The microscopic structure of the oxygen–aluminium hole center in natural and neutron irradiated blue topaz. Phys Chem Miner 32:436–441

    Article  Google Scholar 

  • Spaeth JM, Niklas JR, Bartram RH (1992) Structural analysis of point defects in solids: an introduction to multiple magnetic resonance spectroscopy. Springer, New York

    Book  Google Scholar 

  • Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am Mineral 61:238–247

    Google Scholar 

  • Taylor M, Brown GE (1976) High-temperature structural study of the P21/a<--> A2/a phase transition in synthetic titanite, CaTiSiO5. Am Mineral 61:435–447

    Google Scholar 

  • Vance ER, Metson JB (1985) Radiation damage in natural titanites. Phys Chem Miner 12:255–260

    Article  Google Scholar 

  • Vassilikou-Dova AB (1993) EPR-determined site distributions of low concentrations of transition-metal ions in minerals: review and predictions. Am Mineral 78:49–55

    Google Scholar 

  • Vassilikou-Dova AB, Lehmann G (1988) EPR of V4+ and Fe3+ in titanites. Phys Chem Miner 15:559–563

    Article  Google Scholar 

  • Wood DL, Nassau K (1968) Characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Mineral 53:777–800

    Google Scholar 

  • Zachariasen WH (1930) II. The crystal structure of titanite. Z Krist Cryst Mater 73:7–16

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico and FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais for grants and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. S. C. Chaves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolentino, E.L., Dias, C.H., Chaves, M.L.S.C. et al. On the greenish-yellow color of natural Brazilian titanite. Phys Chem Minerals 46, 203–213 (2019). https://doi.org/10.1007/s00269-018-0998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0998-2

Keywords

Navigation