On the labyrinthine world of arsenites: a single-crystal neutron and X-ray diffraction study of cafarsite

  • G. Diego Gatta
  • Nicola Rotiroti
  • Fernando Cámara
  • Martin Meven
Original Paper


The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano–Cusio–Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+4.47Fe2+3.20Mn2+0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O–H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.


Cafarsite Arsenites Single-crystal X-ray and neutron diffraction Raman spectroscopy Cation partitioning 



The authors acknowledge the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany, for the allocation of neutron beam time at the single-crystal diffractometer HEIDI operated by RWTH Aachen University and Jülich Centre for Neutron Science, Forschungszentrum Jülich (JARA cooperation). The authors thank P. Vignola, who kindly provided the sample of cafarsite used in this study, and the staff of the Laboratory for Provenance Studies of the University of Milano-Bicocca, Department of Earth and Environmental Sciences, for the Raman experiments. Two anonymous reviewers are thanked.


  1. Agilent (2012) CrysAlis computer program, Agilent Technologies, XRD ProductsGoogle Scholar
  2. Becker PJ, Coppens P (1974) Extinction within the limit of validity of the Darwin transfer equations. I. general formalisms for primary and secondary extinction and their application to spherical crystal. Acta Crystallogr A30:129–147CrossRefGoogle Scholar
  3. Boscardin M, Mattioli V (1981) Mte. Cervandone: Die seltenen Arsenmineralien aus den alpinen Klüften des Mte. Cervandone Lapis 6:30–32Google Scholar
  4. Edenharter A, Nowacki W, Weibel M (1977) Zur struktur und zusammensetzung von cafarsit, cafarsit ein As(III)-oxid, kein arsenat. Schweiz Mineral Petrogr Mitt 57:1–16Google Scholar
  5. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  6. Fleischer M, Pabst A, White JS (1978) New mineral names. Am Mineral 63:793–796Google Scholar
  7. Gatta GD, Redhammer GJ, Vignola P, Meven M, McIntyre GJ (2015) Single-crystal neutron diffraction and Mössbauer spectroscopic study of hureaulite, (Mn,Fe)5(PO4)2(HPO4)2(H2O)4. Eur J Mineral 28:93–103CrossRefGoogle Scholar
  8. Gatta GD, Redhammer GJ, Guastoni A, Guastella G, Meven M, Pavese A (2016a) H-bonding scheme and cation partitioning in axinite: a single-crystal neutron diffraction and Mössbauer spectroscopic study. Phys Chem Miner 43:341–352CrossRefGoogle Scholar
  9. Gatta GD, Bosi F, Fernandez-Diaz MT, Hålenius U (2016b) H-bonding scheme in allactite: a combined single-crystal X-ray and neutron diffraction, optical absorption spectroscopy, FTIR and EPMA-WDS study. Mineral Mag 80:719–732CrossRefGoogle Scholar
  10. Gatta GD, McIntyre GJ, Oberti R, Hawthorne FC (2017) Order of [6]Ti4+ in a Ti-rich calcium amphibole from Kaersut, Greenland: a combined X-ray and neutron diffraction study. Phys Chem Miner 44:83–94CrossRefGoogle Scholar
  11. Graeser S (1966) Asbecasit und Cafarsit, zwei neue Mineralien aus dem Binnatal (Kt. Wallis). Schweiz Mineral Petrogr Mitt 46:367–375Google Scholar
  12. Kloprogge JT, Frost RL (1999) Raman microscopy study of cafarsite. Appl Spectrosc 53:874–880CrossRefGoogle Scholar
  13. Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. De Gruyter, Berlin, pp 1–30Google Scholar
  14. Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352Google Scholar
  15. Strunz H, Nickel EH (2001) Strunz mineralogical tables. Schweizerbart, Stuttgart, p 869Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di MilanoMilanoItaly
  2. 2.CNR—Istituto di CristallografiaBariItaly
  3. 3.Institute of CrystallographyRWTH Aachen UniversityAachenGermany
  4. 4.Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)GarchingGermany

Personalised recommendations