The effect of type-B carbonate content on the elasticity of fluorapatite

  • Fernando Cámara
  • Nadia Curetti
  • Piera Benna
  • Yassir A. Abdu
  • Frank C. Hawthorne
  • Cristiano Ferraris
Original Paper
  • 33 Downloads

Abstract

The mechanical behavior of carbonate-bearing fluorapatite (CFAP) (with up to 5.5 wt% CO3) was investigated at high pressure up to 7 GPa. The incorporation of carbonate in CFAP samples was investigated by FTIR spectroscopy. The chemical formulae and cell parameters are Ca4.90Fe0.04 (PO4)2.87 (CO3)0.13 F1.23 and a = 9.3527(1), c = 6.8752(1) Å, V = 520.83(1) Å3 for the FOW CFAP (Fowey Consols area, UK), and Ca4.97Sr0.03 (PO4)2.55 (CO3)0.45 F1.42 and a = 9.3330(1), c = 6.8984(1) Å, V = 520.38(1) Å3 for the FRA CFAP (Framont region, France). Preliminary characterization at ambient conditions was done by single-crystal X-ray diffraction study. The structure refinements, in space group P63/m, confirm a type-B substitution of the phosphate (PO4)3− group by the carbonate ion (CO3)2−. The site occupancies for the C atom are 0.04 for FOW and 0.11 for FRA CFAP, in quite good agreement with the 1.6 and 5.5 wt% CO3 amount obtained by analytical methods. Single-crystal high-pressure XRD study on the two type-B CFAP samples was performed. The FOW and FRA crystals were mounted concurrently in a ETH-type DAC and cell parameters were determined at 26 different pressures up to 6.86 GPa at room T. The variation with pressure of the unit-cell parameters and volume shows no discontinuity that could be related to any possible phase transition in the P range investigated. The linear compressibility coefficients are β a  = 3.63 × 10−3 GPa−1 and β c  = 2.47 × 10−3 GPa−1 for FOW, and β a  = 3.67 × 10−3 GPa−1 and β c  = 2.65 × 10−3 GPa−1 for FRA, giving an axial anisotropy of β a :β c  = 1.47:1 and 1.38:1, respectively. The P-V data were fitted by a second-order Birch–Murnaghan EoS and the resulting BM2-EoS coefficients are V0 = 519.81(7) Å3, KT0 = 92.1(3) GPa for FOW, and V0 = 518.95(9) Å3, KT0 = 89.1(4) GPa for FRA CFAP. The results obtained indicate that a 5.5 wt% CO3 content (type-B) reduces the isothermal bulk modulus by about 9%.

Keywords

Carbonate-rich fluorapatite FTIR spectra HP SC-XRD Crystal structure Bulk modulus EoS 

Notes

Acknowledgements

Ravinder Sidhu is thanked for support with EMP analysis (Winnipeg). Ross J. Angel is thanked for assessment with the installation of SINGLE software at Department of Earth Sciences, University of Torino, and for making available several very useful software applications in his Web site. We are grateful to Matteo Alvaro for helpful suggestions. We thank John M. Hughes and an anonymous referee for critical reading and useful suggestions that greatly improved the manuscript. The CrisDi and Scansetti Interdepartmental Centres of University of Torino are thanked. Financial support has been provided by “Ministero dell’Istruzione, dell’Università e della Ricerca” (MIUR), MIUR-Project PRIN 2010–2011, 2010EARRRZ_007 “Crystal-chemical and structural investigations on the bulk and surfaces of carbonated apatites with amorphous and nano-crystal transitions”. FCH acknowledges support by a Canada Research Chair in Crystallography and Mineralogy and by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, and by Innovation Grants from the Canada Foundation for Innovation.

Supplementary material

269_2018_962_MOESM1_ESM.cif (55 kb)
Supplementary material 1 (CIF 56 KB)

References

  1. Allan DR, Angel RJ, Miletich R, Reichmann H, Brunet F (1996) High-pressure powder-diffraction studies of apatite (Ca5PO4)3(OH, F, Cl). Exp N° HC439, ESRF ReportGoogle Scholar
  2. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, pp 35–59.  https://doi.org/10.2138/rmg.2000.41.2
  3. Angel RJ, Finger LW (2011) SINGLE: a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251.  https://doi.org/10.1107/S0021889810042305 CrossRefGoogle Scholar
  4. Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466.  https://doi.org/10.1107/S0021889897000861 CrossRefGoogle Scholar
  5. Angel RJ, Downs RT, Finger LW (2000) High-temperature–high-pressure diffractometry. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, pp 559–597.  https://doi.org/10.2138/rmg.2000.41.16
  6. Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32.  https://doi.org/10.1107/S0021889806045523 CrossRefGoogle Scholar
  7. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419.  https://doi.org/10.1515/zkri-2013-1711 Google Scholar
  8. Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F (2015) How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity. J Metamorph Geol 33:801–813.  https://doi.org/10.1111/jmg.12138 CrossRefGoogle Scholar
  9. Ashley KT, Barkoff DW, Steele-MacInnis M (2017) Barometric constraints based on apatite inclusions in garnet. Am Mineral 102:743–749.  https://doi.org/10.2138/am-2017-5898 CrossRefGoogle Scholar
  10. Bros R, Carpena J, Sere V, Beltritti A (1996) Occurrence of Pu and fissiogenic REE in hydrothermal apatites from the fossil nuclear reactor 16 at Oklo (Gabon). Radiochim Acta 74:277–282CrossRefGoogle Scholar
  11. Brudevold F, Gardner DE, Smith FA (1956) The distribution of fluoride in human enamel. J Dent Res 35:420–429.  https://doi.org/10.1177/00220345560350031301 CrossRefGoogle Scholar
  12. Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich R, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Mineral 11:1023–1035.  https://doi.org/10.1127/ejm/11/6/1023 CrossRefGoogle Scholar
  13. Comodi P, Liu Y (2000) CO3 substitution in apatite: further insight from new crystal-chemical data of Kasekere (Uganda) apatite. Eur J Mineral 12:965–974.  https://doi.org/10.1127/ejm/12/5/0965 CrossRefGoogle Scholar
  14. Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224.  https://doi.org/10.1007/s002690100154 CrossRefGoogle Scholar
  15. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, AmsterdamGoogle Scholar
  16. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 427–454. ISBN 0-939950-60-XGoogle Scholar
  17. Elliott JC, Wilson RM, Dowker SEP (2002) Apatite structures. Advances in X-ray analysis. Copyright (c)JCPDS ICDD, vol 45, pp 172–181Google Scholar
  18. Fleet ME (2009) Infrared spectra of carbonate apatites: ν2-region bands. Biomaterials 30:1473–1481.  https://doi.org/10.1016/j.biomaterials.2008.12.007 CrossRefGoogle Scholar
  19. Fleet ME, Liu X (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182.  https://doi.org/10.1016/j.jssc.2004.04.002 CrossRefGoogle Scholar
  20. Fleet ME, Liu X (2007) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28:916–926.  https://doi.org/10.1016/j.biomaterials.2006.11.003 CrossRefGoogle Scholar
  21. Fleet ME, Liu X (2008a) Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am Mineral 93:1460–1469.  https://doi.org/10.2138/am.2008.2786 CrossRefGoogle Scholar
  22. Fleet ME, Liu X (2008b) Type A-B carbonate chlorapatite synthesized at high pressure. J Solid State Chem 181:2494–2500.  https://doi.org/10.1016/j.jssc.2008.06.016 CrossRefGoogle Scholar
  23. Fleet ME, Liu X, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral 89:1422–1432CrossRefGoogle Scholar
  24. Gonzalez-Platas J, Alvaro M, Nestola F, Angel RJ (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382.  https://doi.org/10.1107/S1600576716008050 CrossRefGoogle Scholar
  25. Henry TH (1850) On francolite, a supposed new mineral. Philos Mag 36:134–135Google Scholar
  26. Hughes JM (2015) The many facets of apatite. Am Mineral 100:1033–1039.  https://doi.org/10.2138/am-2015-5193 CrossRefGoogle Scholar
  27. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 1–12. ISBN 0-939950-60-XGoogle Scholar
  28. Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170.  https://doi.org/10.2113/gselements.11.3.165 CrossRefGoogle Scholar
  29. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH and Cl apatites. Am Mineral 74:870–876Google Scholar
  30. Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatites: solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. Am Mineral 75:295–304Google Scholar
  31. Hughes JM, Nekvasil H, Ustunisik G, Lindsley DH, Coraor AE, Vaughn J, Phillips B, McCubbin FM, Woerner WR (2014) Solid solution in the fluorapatite-chlorapatite binary system: High-precision crystal structure refinements of synthetic F-Cl apatite. Am Mineral 99:369–376.  https://doi.org/10.2138/am.2014.4644 CrossRefGoogle Scholar
  32. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349.  https://doi.org/10.1006/jssc.2000.9238 CrossRefGoogle Scholar
  33. King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378.  https://doi.org/10.1107/S0021889879012723 CrossRefGoogle Scholar
  34. Klotz S, Chervin JC, Munsch P, Marchand G Le (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42(7 pp):75413.  https://doi.org/10.1088/0022-3727/42/7/075413 CrossRefGoogle Scholar
  35. Knudsen AC, Gunter ME (2002) Sedimentary phosphorites—an example: phosphoria formation, Southern Idaho, USA. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 363–389. ISBN 0-939950-60-XGoogle Scholar
  36. LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404CrossRefGoogle Scholar
  37. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, New York.  https://doi.org/10.1159/isbn.978-3-318-04021-0 Google Scholar
  38. Leventouri TH, Chakoumakos BC, Moghaddam HY, Perdikatsis V (2000) Powder neutron diffraction studies of a carbonate fluorapatite. J Mater Res 15:511–517CrossRefGoogle Scholar
  39. Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: Significance of carbonate. Am Mineral 96:74–80.  https://doi.org/10.2138/am.2011.3535 CrossRefGoogle Scholar
  40. Mackie PE, Young RA (1974) Fluorine-chlorine interaction in fluor-chlorapatite. J Solid State Chem 11:319–329.  https://doi.org/10.1016/S0022-4596(74)80037-X CrossRefGoogle Scholar
  41. Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584.  https://doi.org/10.1007/s00269-004-0415-x CrossRefGoogle Scholar
  42. McClellan GH (1980) Mineralogy of carbonate fluorapatites. J Geol Soc London 137:675–681CrossRefGoogle Scholar
  43. McClellan GH, Lehr JR (1969) Crystal chemical investigation of natural apatites. Am Mineral 54:1374–1391Google Scholar
  44. McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatites. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development-Geol Soc London Spec Pub vol 52, pp 23–31.  https://doi.org/10.1144/GSL.SP.1990.052.01.03
  45. McConnell D (1938) A structural investigation of the isomorphism of the apatite group. Am Mineral 23:1–19Google Scholar
  46. McCubbin FM, Mason HE, Park H, Phillips BL, Parise JB, Nekvasil H, Lindsley DH (2008) Synthesis and characterization of low-OH fluor-chlorapatite: a single-crystal XRD and NMR spectroscopic study. Am Mineral 93:210–216.  https://doi.org/10.2138/am.2008.2557 CrossRefGoogle Scholar
  47. Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41, pp 445–519. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia.  https://doi.org/10.2138/rmg.2000.41.14
  48. Nathan Y (1996) Mechanism of CO3 2– substitution in carbonate-fluorapatite: evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations—discussion. Am Mineral 81:513–514CrossRefGoogle Scholar
  49. Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 13–49. ISBN 0-939950-60-XGoogle Scholar
  50. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179.  https://doi.org/10.1127/0935-1221/2010/0022-2022 CrossRefGoogle Scholar
  51. Pasteris JD (2016) A mineralogical view of apatitic biomaterials. Am Mineral 101:2594–2610.  https://doi.org/10.2138/am-2016-5732 CrossRefGoogle Scholar
  52. Perdikatsis B (1991) X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum, vols 79–82, 809–814Google Scholar
  53. Pouchou JL, Pichoir F (1985) ‘PAP’ φ(ρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106Google Scholar
  54. Rakovan JF, Pasteris JD (2015) A technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11:195–200.  https://doi.org/10.2113/gselements.11.3.195 CrossRefGoogle Scholar
  55. Regnier P, Lasaga AC, Berner RA, Han OH, Zilm KW (1994) Mechanism of CO3 2– substitution in carbonate-fluorapatite: evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. Am Mineral 79:809–818Google Scholar
  56. Sandell EB, Hey MH, McConnell D (1939) The composition of francolite. Min Mag 25:395–401CrossRefGoogle Scholar
  57. Schouwink P, Miletich R, Ullrich A, Glasmacher UA, Trautmann C, Neumann R, Kohn BP (2010) Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys Chem Miner 37:371–387.  https://doi.org/10.1007/s00269-009-0340-0 CrossRefGoogle Scholar
  58. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122.  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  59. Wilson RM, Elliott JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414CrossRefGoogle Scholar
  60. Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213.  https://doi.org/10.1016/j.biomaterials.2003.08.057 CrossRefGoogle Scholar
  61. Yi H, Balan E, Gervais C, Segalen L, Fayon F, Roche D, Person A, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Babonneau F (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069.  https://doi.org/10.2138/am.2013.4445 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra “Ardito Desio”MilanoItaly
  2. 2.CrisDi Interdepartmental Center for CrystallographyTorinoItaly
  3. 3.Dipartimento di Scienze della TerraTorinoItaly
  4. 4.Department of Applied Physics and AstronomyUniversity of SharjahSharjahUAE
  5. 5.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  6. 6.Institute of Mineralogy, Physics of Materials and Cosmochemistry UMR 7590, National History Museum of Natural SciencesParisFrance

Personalised recommendations