Physics and Chemistry of Minerals

, Volume 45, Issue 8, pp 773–787 | Cite as

The system Na2CO3–CaCO3 at 3 GPa

  • Ivan V. Podborodnikov
  • Anton Shatskiy
  • Anton V. Arefiev
  • Sergey V. Rashchenko
  • Artem D. Chanyshev
  • Konstantin D. Litasov
Original Paper


It was suggested that alkali–alkaline earth carbonates may have a substantial role in petrological processes relevant to metasomatism and melting of the Earth’s mantle. Because natrite, Na2CO3, Na–Ca carbonate (shortite and/or nyerereite), and calcite, CaCO3, have been recently reported from xenoliths of shallow mantle (110–115 km) origin, we performed experiments on phase relations in the system Na2CO3–CaCO3 at 3 GPa and 800–1300 °C. We found that the system has one intermediate compound, Na2Ca3(CO3)4, at 800 °C, and two intermediate compounds, Na2Ca(CO3)2 and Na2Ca3(CO3)4, at 850 °C. CaCO3 crystals recovered from experiments at 950 and 1000 °C are aragonite and calcite, respectively. Maximum solid solution of CaCO3 in Na2CO3 is 20 mol% at 850 °C. The Na-carbonate–Na2Ca(CO3)2 eutectic locates near 860 °C and 56 mol% Na2CO3. Na2Ca(CO3)2 melts incongruently near 880 °C to produce Na2Ca3(CO3)4 and a liquid containing about 51 mol% Na2CO3. Na2Ca3(CO3)4 disappears above 1000 °C via incongruent melting to calcite and a liquid containing about 43 mol% Na2CO3. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 87 mol% Na2CO3. Na-carbonate remains solid up to 1150 °C and melts at 1200 °C. The Na2CO3 content in the liquid coexisting with calcite decreases to 15 mol% as temperature increases to 1300 °C. Considering the present and previous data, a range of the intermediate compounds on the liquidus of the Na2CO3–CaCO3 join changes as pressure increases in the following sequence: Na2Ca(CO3)2 (0.1 GPa) → Na2Ca(CO3)2, Na2Ca3(CO3)4 (3 GPa) → Na4Ca(CO3)3, Na2Ca3(CO3)4 (6 GPa). Thus, the Na2Ca(CO3)2 nyerereite stability field extends to the shallow mantle pressures. Consequently, findings of nyerereite among daughter phases in the melt inclusions in olivine from the sheared garnet peridotites are consistent with their mantle origin.


Na–Ca carbonates High-pressure experiment Nyerereite Shortite Raman Carbonatite 



The authors are very grateful to Robert Luth and an anonymous reviewer for constructive comments and helpful suggestions and Taku Tsuchiya for editorial handling. We thank Kathryn Moore and an anonymous reviewer for critical reading of an early draft of the manuscript. This study was financially supported by the Russian Foundation for Basic Research (Project No 17-05-00501). KL thanks for partial support from the state assignment Project No. 0330-2016-0006.


  1. Abersteiner A, Giuliani A, Kamenetsky VS, Phillips D (2017) Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem Geol 455:331–341CrossRefGoogle Scholar
  2. Antao SM, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can Mineral 47(5):1245–1255CrossRefGoogle Scholar
  3. Böttcher ME, Reutel C (1996) The Raman spectrum of alpha-Na2Ca(CO3)2. J Raman Spectrosc 27(11):859–861CrossRefGoogle Scholar
  4. Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281(3–4):333–342CrossRefGoogle Scholar
  5. Chen W, Kamenetsky VS, Simonetti A (2013) Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat Commun 4:2687CrossRefGoogle Scholar
  6. Cooper AF, Gittins J, Tuttle OF (1975) The system Na2CO3-K2CO3-CaCO3 at 1 kbar and its significance in carbonatite petrogenesis. Am J Sci 275(5):534–560CrossRefGoogle Scholar
  7. Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Miner 92(2–3):370–379CrossRefGoogle Scholar
  8. Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Miner Petrol 149(3):288–305CrossRefGoogle Scholar
  9. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47(4):647–671CrossRefGoogle Scholar
  10. De La Pierre M, Carteret C, Maschio L, André E, Orlando R, Dovesi R (2014) The Raman spectrum of CaCO3 polymorphs calcite and aragonite: a combined experimental and computational study. J Chem Phys 140(16):164509CrossRefGoogle Scholar
  11. Dickens B, Hyman A, Brown WE (1971) Crystal structure of Ca2Na2(CO3)3 (shortite). J Res Natl Bur Stand Sect A Phys Chem A 75(2):129–140CrossRefGoogle Scholar
  12. Dusek M, Chapuis G, Meyer M, Petricek V (2003) Sodium carbonate revisited. Acta Crystallogr Sect B Struct Sci 59:337–352CrossRefGoogle Scholar
  13. Gavryushkin PN, Bakakin VV, Bolotina NB, Shatskiy AF, Seryotkin YV, Litasov KD (2014) Synthesis and crystal structure of new carbonate Ca3Na2(CO3)4 homeotypic with orthoborates M3Ln2(BO3)4 (M = Ca, Sr, and Ba). Cryst Growth Des 14(9):4610–4616CrossRefGoogle Scholar
  14. Gavryushkin PN, Thomas VG, Bolotina NB, Bakakin VV, Golovin AV, Seryotkin YV, Fursenko DA, Litasov KD (2016) Hydrothermal synthesis and structure solution of Na2Ca(CO3)2: “Synthetic Analogue” of mineral nyerereite. Cryst Growth Des 16(4):1893–1902CrossRefGoogle Scholar
  15. Ghosh S, Ohtani E, Litasov KD, Terasaki H (2009) Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol 262:17–28CrossRefGoogle Scholar
  16. Giuliani A, Kamenetsky VS, Phillips D, Kendrick MA, Wyatt BA, Goemann K (2012) Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40(11):967–970CrossRefGoogle Scholar
  17. Golovin AV, Sharygin VV, Pokhilenko NP (2007) Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages. Petrology 15(2):168–183CrossRefGoogle Scholar
  18. Golovin A, Korsakov A, Gavryushkin P, Zaitsev A, Thomas V, Moine B (2017a) Raman spectra of nyerereite, gregoryite, and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J Raman Spectrosc 48(11):1559–1565CrossRefGoogle Scholar
  19. Golovin AV, Sharygin IS, Korsakov AV (2017b) Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem Geol 455:357–375CrossRefGoogle Scholar
  20. Golovin A, Sharygin I, Kamenetsky V, Korsakov A, Yaxley G (2018) Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem Geol 483(4):261–274CrossRefGoogle Scholar
  21. Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52(4):765–789CrossRefGoogle Scholar
  22. Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336(6198):459–462CrossRefGoogle Scholar
  23. Hernlund J, Leinenweber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Miner 91(2–3):295–305CrossRefGoogle Scholar
  24. Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophy Geosyst 1(10):2000GC000070CrossRefGoogle Scholar
  25. Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32(10):845–848CrossRefGoogle Scholar
  26. Kamenetsky VS, Sharygin VV, Kamenetsky MB, Golovin AV (2006) Chloride-carbonate nodules in kimberlites from the udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochem Int 44(9):935–940CrossRefGoogle Scholar
  27. Kamenetsky VS, Kamenetsky MB, Weiss Y, Navon O, Nielsen TFD, Mernagh TP (2009) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112:334–346CrossRefGoogle Scholar
  28. Kamenetsky VS, Grütter H, Kamenetsky MB, Gömann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111CrossRefGoogle Scholar
  29. Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73(5):797–816CrossRefGoogle Scholar
  30. Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS (2013) Melting phase relations of carbonated eclogite at 9–21 GPa and alkali-rich melts in the deep mantle. J Petrol 54(8):1555–1583CrossRefGoogle Scholar
  31. Lavrent’ev YG, Karmanov N, Usova L (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys 56(8):1154–1161CrossRefGoogle Scholar
  32. Li Z (2015) Melting and structural transformations of carbonates and hydrous phases in Earth’s mantle, Doctor of Philosophy (Geology). The University of Michigan, United StatesGoogle Scholar
  33. Li Z, Li J, Lange R, Liu J, Militzer B (2017) Determination of calcium carbonate and sodium carbonate melting curves up to Earth’s transition zone pressures with implications for the deep carbon cycle. Earth Planet Sci Lett 457:395–402CrossRefGoogle Scholar
  34. Litasov KD, Shatskiy A, Ohtani E, Yaxley GM (2013) The solidus of alkaline carbonatite in the deep mantle. Geology 41(1):79–82CrossRefGoogle Scholar
  35. Maslen E, Streltsov V, Streltsova N, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr Sect B Struct Sci 51(6):929–939CrossRefGoogle Scholar
  36. Menzies M, Hawkesworth C (1986) Mantle metasomatism. Academic Press, LondonGoogle Scholar
  37. Mernagh TP, Kamenetsky VS, Kamenetsky MB (2011) A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochim Acta Part A Mol Biomol Spectrosc 80(1):82–87CrossRefGoogle Scholar
  38. Moore KR (2012) Experimental study in the Na2O–CaO–MgO–Al2O3–SiO2–CO2 system at 3 GPa: the effect of sodium on mantle melting to carbonate-rich liquids and implications for the petrogenesis of silicocarbonatites. Mineral Mag 76(2):285–309CrossRefGoogle Scholar
  39. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296CrossRefGoogle Scholar
  40. Rashchenko SV, Bakakin VV, Shatskiy AF, Gavryushkin PN, Seryotkin YV, Litasov KD (2017) Noncentrosymmetric Na2Ca4(CO3)5 carbonate of “M13M23XY3Z” structural type and affinity between borate and carbonate structures for design of new optical materials. Cryst Growth Des 17(11):6079–6084CrossRefGoogle Scholar
  41. Sharygin I, Litasov K, Shatskiy A, Golovin A, Ohtani E, Pokhilenko N (2015) Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res 28:1391–1414CrossRefGoogle Scholar
  42. Shatskiy A, Gavryushkin PN, Sharygin IS, Litasov KD, Kupriyanov IN, Higo Y, Borzdov YM, Funakoshi K, Palyanov YN, Ohtani E (2013a) Melting and subsolidus phase relations in the system Na2CO3-MgCO3+-H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am Miner 98(11–12):2172–2182CrossRefGoogle Scholar
  43. Shatskiy A, Sharygin IS, Gavryushkin PN, Litasov KD, Borzdov YM, Shcherbakova AV, Higo Y, Funakoshi K, Palyanov YN, Ohtani E (2013b) The system K2CO3–MgCO3 at 6 GPa and 900–1450 °C. Am Mineral 98(8–9):1593–1603CrossRefGoogle Scholar
  44. Shatskiy A, Sharygin IS, Litasov KD, Borzdov YM, Palyanov YN, Ohtani E (2013c) New experimental data on phase relations for the system Na2CO3–CaCO3 at 6 GPa and 900–1400 °C. Am Miner 98(11–12):2164–2171CrossRefGoogle Scholar
  45. Shatskiy A, Borzdov YM, Litasov KD, Kupriyanov IN, Ohtani E, Palyanov YN (2014) Phase relations in the system FeCO3–CaCO3 at 6 GPa and 900–1700 °C and its relation to the system CaCO3–FeCO3–MgCO3. Am Miner 99(4):773–785CrossRefGoogle Scholar
  46. Shatskiy A, Gavryushkin PN, Litasov KD, Koroleva ON, Kupriyanov IN, Borzdov YM, Sharygin IS, Funakoshi K, Palyanov YN, Ohtani E (2015a) Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. Eur J Mineral 27:175–184CrossRefGoogle Scholar
  47. Shatskiy AF, Litasov KD, Palyanov YN (2015b) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geol Geophys 56:113–142CrossRefGoogle Scholar
  48. Shatskiy A, Litasov KD, Palyanov YN, Ohtani E (2016a) Phase relations on the K2CO3–CaCO3–MgCO3 join at 6 GPa and 900–1400 °C: implication for incipient melting in carbonated mantle domains. Am Miner 101(2):437–447CrossRefGoogle Scholar
  49. Shatskiy A, Litasov KD, Sharygin IS, Egonin IA, Mironov AM, Palyanov YN, Ohtani E (2016b) The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250 °C and its relation to the partial melting of carbonated mantle. High Press Res 36(1):23–41CrossRefGoogle Scholar
  50. Shatskiy A, Podborodnikov IV, Arefiev AV, Litasov KD, Chanyshev AD, Sharygin IS, Karmanov NS, Ohtani E (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. Am Miner 102(9):1934–1946CrossRefGoogle Scholar
  51. Shatskiy A, Podborodnikov IV, Arefiev AV, Minin DA, Chanyshev AD, Litasov KD (2018) Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa. Am Miner 103(3):441–452CrossRefGoogle Scholar
  52. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead J, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas—direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa. Lithos 256:182–196CrossRefGoogle Scholar
  53. Song Y, Luo M, Zhao D, Peng G, Lin C, Ye N (2017) Explorations of new UV nonlinear optical materials in the Na2CO3–CaCO3 system. J Mater Chem C 5(34):8758–8764CrossRefGoogle Scholar
  54. Stoppa F, Jones A, Sharygin V (2009) Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts Research Article. Open Geosci 1(2):131–151CrossRefGoogle Scholar
  55. Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529:76–79CrossRefGoogle Scholar
  56. Walter M, Presnall DC (1994) Melting behavior of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. J Petrol 35(2):329–359CrossRefGoogle Scholar
  57. Wyllie PJ, Tuttle OF (1960) The system CaO–CO2–H2O and the origin of carbonatites. J Petrol 1(1):1–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ivan V. Podborodnikov
    • 1
    • 2
  • Anton Shatskiy
    • 1
    • 2
  • Anton V. Arefiev
    • 1
    • 2
  • Sergey V. Rashchenko
    • 1
    • 2
  • Artem D. Chanyshev
    • 1
    • 2
  • Konstantin D. Litasov
    • 1
    • 2
  1. 1.V.S. Sobolev Institute of Geology and MineralogyRussian Academy of ScienceNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations