Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 489–496 | Cite as

Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

  • Michail N. Taran
  • M. Darby Dyar
  • Vladimir M. Khomenko
Original Paper
  • 92 Downloads

Abstract

A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973–980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,\({\text{Fe}}_{{{\text{0.07}}}}^{{{\text{3}}+}}\))Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as ~ 1520 cm−1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm−1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm−1, suggests a comparatively high degree of covalency in the octahedral Fe3+–O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm−1.

Keywords

Beryl Microprobe composition Mössbauer spectroscopy Optical absorption spectroscopy Raman spectra IR spectra 

Notes

Acknowledgements

The authors are thankful to Joseph Boesenberg, Providence, USA, for microprobe analysis of the sample; Elizabeth Sklute for assistance with Mössbauer fitting; Laura Breitenfeld for measuring Raman spectra (South Hadley, Massachusetts) and two anonymous reviewers, whose constructive critiques, advises and suggestions helped to significantly improve the paper.

References

  1. Andersson LO (2006) The positions of H+, Li+ and Na+ impurities in beryls. Phys Chem Miner 33:403–416CrossRefGoogle Scholar
  2. Burns RG (1993) Mineralogical application of crystal field theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. da Costa GM, Polli GO, Kahwage MA, de Grave E, Sabioni ACS, Mendes JC (2006) The effect of thermal treatment on the 57Fe Mössbauer spectrum of beryl. Phys Chem Miner 33:161–166CrossRefGoogle Scholar
  4. Edgar A, Hutton DR (1982) Exchange-coupled pairs of Fe3+ ions in beryl. Solid State Commun 41:195–198CrossRefGoogle Scholar
  5. Farrell EF, Newnham RE (1965) Crystal-field spectra of chrysoberyl, alexandrite, peridot, and sinhalite. Am Miner 50:1972–1981Google Scholar
  6. Goldman SD, Rossman GR, Parkin KM (1978) Channel constituents in beryl. Phys Chem Miner 3:225–235CrossRefGoogle Scholar
  7. Groat LA, Rossman GR, Dyar MD, Turner D, Piccoli PMB, Schultz AJ, Ottolini L (2010) Crystal chemistry of dark blue aquamarine from the true blue showing, Yukon territory, Canada. Can Miner 48:597–613CrossRefGoogle Scholar
  8. Kim CC, Bell MI, McKeown DA (1995) Vibrational analysis of beryl (Be3Al2Si6O18) and its constituent ring (Si6O18). Phys B 205(2):193–208CrossRefGoogle Scholar
  9. Lebedev AS, Klyachin VA, Solntsev VP (1988) Crystal chemical features of hydrothermal beryls. In: Sobolev NV (ed) The materials on genetic and experimental mineralogy. Growth and properties of crystals. Nauka, Novosibirsk (Russian) Google Scholar
  10. Lee HM, Tarakeshwar P, Park J, Kołaski MR, Yoon YJ, Yi H-B, Kim WY, Kim KS (2004) Insights into the structures, energetics, and vibrations of monovalent cation–(water)1–6 clusters. J Phys Chem A 108:2949–2958CrossRefGoogle Scholar
  11. Lehmann G, Harder H (1970) Optical spectra of di- and trivalent iron in corundum. Am Miner 55:98–105Google Scholar
  12. Lin J, Chen N, Huang D, Pan Y (2013) Iron pairs in beryl: new insights from electron paramagnetic resonance, synchrotron X-ray absorption spectroscopy, and ab initio calculations. Am Miner 98:1745–1753CrossRefGoogle Scholar
  13. Łodziński M, Sitarz M, Stec K, Kozanecki M, Fojud Z, Jurga S (2005) ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts. J Mol Struct 744–747:1005–1015Google Scholar
  14. Manning PG (1970) Racah parameters and their relationship to lengths and covalencies of Mn2+- and Fe3+ oxygen bonds in silicates. Can Miner 10:677–688Google Scholar
  15. Moore RK, White WB (1972) Electronic spectra of transition metal ions in silicate garnets. Can Miner 11:791–811Google Scholar
  16. Moreno M, Barriuso MT, Aramburu JA, García-Fernández P, García-Lastra JM (2006) Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: the influence of pressure. J Phys Condens Matter 18:R315–R360CrossRefGoogle Scholar
  17. Parkin KM, Loeffler BM, Burns RG (1977) Mössbauer spectra of kyanite, aquamarine and cordierite showing intervalence charge transfer. Phys Chem Miner 1:301–311CrossRefGoogle Scholar
  18. Platonov AN, Taran MN, Polshin EV (1979a) On the forms of iron in beryls. Zap Vses Miner Obsch 6:725–730 (Russian)Google Scholar
  19. Platonov AN, Taran MN, Polshin EV, Minko OE (1979b) On nature of color of iron-bearing beryls. Izv AN SSR Ser Geol 10:54–68 (Russian) Google Scholar
  20. Platonov AN, Taran MN, Balitsky VS (1984) Nature of colour of gems. Nedra, Moscow (Russian) Google Scholar
  21. Platonov AN, Khomenko VM, Taran MN (2016) Crystal chemistry, optical spectra and color of beryls. I. Heliodor and golden beryl—two varieties of natural yellow beryls. Miner J (Ukr) 38:3–14 (Russian) Google Scholar
  22. Price DC, Vance ER, Smith G, Edgar A, Dickson BL (1976) Mossbauer effect studies of beryl. J Phys Colloq 37:C6-C811–C6-C817Google Scholar
  23. Sanders IS, Doff DH (1991) A blue sodic beryl from southeast Ireland. Miner Mag 55:167–172CrossRefGoogle Scholar
  24. Sherriff LS, Grundy HD, Hartmann JS, Hawthorne FC, Černý P (1991) The incorporation of alkalis in beryl: multi-nuclear MAS NMR and crystal-structure studies. Can Miner 29:271–285Google Scholar
  25. Spinolo G, Fontana I, Galli A (2007) Optical absorption spectra of Fe2+ and Fe3+ in beryl crystals. Phys Status Solid 244:4660–4668CrossRefGoogle Scholar
  26. Sviridov DT, Smirnov YuF (1977) Theory of optical spectra of transition metal ions. Nauka, Moscow (Russian) Google Scholar
  27. Sviridov DT, Sviridova RK, Smirnov YF (1976) Optical spectra of transition metal ions in crystals. Nauka, Moscow (Russian) Google Scholar
  28. Taran MN, Langer K (2000) Electronic absorption spectra of Fe3+ in andradite and epidote at different temperatures and pressures. Eur J Miner 12:7–15CrossRefGoogle Scholar
  29. Taran MN, Rossman GR (2001) Optical spectroscopic study of tuhualite and a re-examination of the beryl, cordierite and osumilite spectra. Am Miner 86:973–980CrossRefGoogle Scholar
  30. Taran MN, Platonov AN, Kalinichenko AM, Povarennich AC (1978) Investigation of nature of color of heliodors from the Transbajkal area. Dop AN UkSSR 11:415–419 (Ukranian) Google Scholar
  31. Taran MN, Dyar MD, Khomenko VM, Boesenberg JS (2017) Optical absorption, Mössbauer and FTIR spectroscopic studies of two blue bazzites. Phys Chem Miner 44:497–507CrossRefGoogle Scholar
  32. Trees RE (1952) The L(L + l) correction to the Slater formulas for the energy levels. Phys Rev 85:382CrossRefGoogle Scholar
  33. Viana RR, da Costa GM, De Grave E, Jordt-Evangelista H, Stern WB (2002) Characterization of beryl (aquamarine variety) by Mössbauer spectroscopy. Phys Chem Miner 29:78–86CrossRefGoogle Scholar
  34. Wood DL, Nassau K (1967) Infrared spectra of foreign molecules in beryl. J Chem Phys 47:2220–2228CrossRefGoogle Scholar
  35. Wood DL, Nassau K (1968) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Miner 53:777–800Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Michail N. Taran
    • 1
  • M. Darby Dyar
    • 2
  • Vladimir M. Khomenko
    • 1
  1. 1.Institute of Geochemistry, Mineralogy and Ore FormationNational Academy of Sciences of UkraineKiev-142Ukraine
  2. 2.Mount Holyoke CollegeSouth HadleyUSA

Personalised recommendations