Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 463–473 | Cite as

High-temperature crystal chemistry of layered calcium borosilicates: CaBSiO4(OH) (datolite), Ca4B5Si3O15(OH)5 (‘bakerite’) and Ca2B2SiO7 (synthetic analogue of okayamalite)

  • Maria G. Krzhizhanovskaya
  • L. A. Gorelova
  • R. S. Bubnova
  • I. V. Pekov
  • S. V. Krivovichev
Original Paper

Abstract

The high-temperature behaviour of three Ca borosilicates has been studied by in situ powder high-temperature X-ray diffraction (HTXRD), differential scanning calorimetry and thermogravimetry in the temperature range 30–900 °C for natural samples of datolite, CaBSiO4(OH), and ‘bakerite’, Ca4B5Si3O15(OH)5, and a synthetic analogue of okayamalite, Ca2B2SiO7. The latter was obtained by heating datolite at 800 °C for 5 h. Datolite and bakerite start to dehydroxylate above 700 and 500 °C, respectively, and decompose fully to form a high-temperature modification of okayamalite, HT-Ca2B2SiO7, and wollastonite, CaSiO3 at about 730 °С. Above 900 °C, HT-okayamalite decomposes with the formation of wollastonite, CaSiO3, and metaborate CaB2O4. The latter melts at about 990 °C. Above 1000 °C, only the existence of wollastonite, CaSiO3 and cristobalite, SiO2 was observed. According to the HTXRD data, in the temperature range 30–500 °C, datolite and ‘bakerite’ demonstrate very similar and relatively low volumetric thermal expansion: α v  = 29 and 27 × 10−6 °C−1, respectively. A high thermal expansion anisotropy (α max/α min ~ 3) is caused by both the layered character of the crystal structures and the shear deformations of their monoclinic unit cells. The direction of maximum expansion is intermediate between the normal direction to the layers and the (a + c) vector. A possible transformation mechanism from the datolite to the okayamalite structure topology is proposed from geometrical considerations. The synthetic analogue of okayamalite, Ca2B2SiO7, undergoes a reversible polymorphic transition at about 550 °C with a decrease in symmetry from tetragonal to orthorhombic. The crystal structure of the high-temperature (HT) modification of okayamalite was solved from the powder-diffraction data [900 °C: P21212, a = 7.3361(4), b = 7.1987(4), c = 4.8619(4) Å, V = 256.76(3) Å3, R wp = 6.61, R Bragg = 2.68%].

Keywords

Calcium borosilicate Datolite Bakerite Okayamalite Phase transition Thermal expansion Crystal structure High-temperature X-ray diffraction 

Notes

Acknowledgements

This research was financially supported by the Russian Foundation for Basic Research (no. 17-03-00887) and the President of Russian Federation grant for leading scientific schools (to SVK; Grant NSh-10005.2016.5). We are grateful to O.G. Bubnova and T. L. Panikorovsky for performing the thermal analysis, V. V. Shilovskih for performing the chemical analysis and S. N. Volkov for substantial help with the JANA2006 software. The XRD, TG and DSC studies have been carried out at the X-ray Diffraction Center and the chemical analysis has been performed at the Geomodel Center of St. Petersburg State University.

Supplementary material

269_2017_933_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 KB)
269_2017_933_MOESM2_ESM.cif (2 kb)
Supplementary material 2 (CIF 1 KB)

References

  1. Bačík P, Fridrichová J, Uher P, Pršek J, Ondrejka M (2014) The crystal chemistry of gadolinite-datolite group silicates. Can Mineral 52:625–642CrossRefGoogle Scholar
  2. Bačík P, Miyawaki R, Atencio D, Cámara F, Fridrichová J (2017) Nomenclature of the gadolinite supergroup. Eur J Mineral 29 (in press) Google Scholar
  3. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package Topospro. Cryst Growth Des 14:3576–3586CrossRefGoogle Scholar
  4. Bruker AXS (2009) Topas 4.2. General profile and structure analysis software for powder diffraction data. Karlsruhe, GermanyGoogle Scholar
  5. Bubnova RS, Filatov SK (2008a) Vysokotemperaturnaya Kristallokhimiya Boratov i Borosilikatov (High temperature crystal chemistry borates and borosilicates). Nauka, St. Petersburg (Russian) Google Scholar
  6. Bubnova RS, Filatov SK (2008b) Strong anisotropic thermal expansion in borates. Phys Stat Sol 245:2469–2476CrossRefGoogle Scholar
  7. Bubnova RS, Firsova VA, Filatov SK (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor—TTT). Glass Phys Chem 39:347–350CrossRefGoogle Scholar
  8. Bubnova RS, Volkov SN, Yukhno VA, Krzhizhanovskaya MG (2016) Crystal structure of new polymorphic modification β-Ca3B2SiO8, β-α phase transition and thermal expansion of α- and β-modifications. Glass Phys Chem 42:349–358CrossRefGoogle Scholar
  9. Filatov SK (1971) Anomale Warmeausdehnung von V2O5. Kristall Technik 6:777–785CrossRefGoogle Scholar
  10. Filatov SK (1990) Vysokotemperaturnaya Kristallokhimiya (High temperature crystal chemistry). Nedra, Leningrad (Russian) Google Scholar
  11. Filatov SK (2011) General concept of increasing crystal symmetry with an increase in temperature. Crystallogr Rep 56:953–961CrossRefGoogle Scholar
  12. Giuli G, Bindi L, Bonazzi P (2000) Rietveld refinement of okayamalite, Ca2SiB2O7: structural evidence for the B/Si ordered distribution. Am Mineral 85:1512–1515CrossRefGoogle Scholar
  13. Gorelova LA, Filatov SK, Krzhizhanovskaya MG, Bubnova RS (2015) High-temperature behavior of danburite-like-borosilicates MB2Si2O6 (M = Ca, Sr, Ba). Phys Chem Glasses 56:189–196Google Scholar
  14. Griffen DT (1988) Howlite, Ca2Si2B5O9(OH)5: structure refinement and hydrogen bonding. Am Mineral 73:1138–1144Google Scholar
  15. Hagiya K, Kusaka K, Ohmasa M, Iishi K (2001) Commensurate structure of Ca2CoSi2O7, a new twinned orthorhombic structure. Acta Crystallogr B 57:271–277CrossRefGoogle Scholar
  16. Hålenius U, Hatert F, Pasero M, Mills J (2016) New minerals and nomenclature modifications approved in 2016. CNMNC Newsletter No 33. Mineral Mag 80:1135–1144CrossRefGoogle Scholar
  17. Ito T, Mori H (1953) The crystal structure of datolite. Acta Crystallogr 6:24–32CrossRefGoogle Scholar
  18. Ivanov YV, Belokoneva EL (2007) Multipole refinement and the electron density analysis in natural borosilicate datolite using X-ray diffraction data. Acta Crystallogr B63:49–55CrossRefGoogle Scholar
  19. Jia ZH, Schaper AK, Massa W, Treutmann W, Rager H (2006) Structure and phase transitions in Ca2CoSi2O7–Ca2ZnSi2O7 solid-solution crystals. Acta Crystallogr B62:547–555CrossRefGoogle Scholar
  20. Inorganic Crystal Structure Database (ICSD) (2016). Karlsruhe, GermanyGoogle Scholar
  21. Kimata M (1978) Boron behavior in the thermal decomposition of datolite. Neues Jahrb Miner Monat 58–70Google Scholar
  22. Krivovichev SV (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallogr A68:393–398CrossRefGoogle Scholar
  23. Krivovichev SV (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 77:275–326CrossRefGoogle Scholar
  24. Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chem Int Ed 53:654–661CrossRefGoogle Scholar
  25. Krivovichev SV (2016) Structural complexity and configurational entropy of crystals. Acta Crystallogr B72:274–276Google Scholar
  26. Landau LD, Lifshitz EM (1980) Statistical physics. Part 1. Pergamon Press, Oxford, p 449Google Scholar
  27. Matsubara S, Miyawaki R, Kato A, Yokoyama K, Okamoto A (1998) Okayamalite, Ca2B2SiO7, a new mineral, boron analogue of gehlenite. Mineral Mag 62:703–706CrossRefGoogle Scholar
  28. Merlini M, Gemmi M, Cruciani G, Artioli G (2008) High-temperature behavior of melilite: in situ X-ray diffraction study of gehlenite–akermanite-Na melilite solid solution. Phys Chem Miner 35:147–155CrossRefGoogle Scholar
  29. Olmi F, Viti C, Bindi L, Bonazzi P, Menchetti S (2000) Second occurrence of okayamalite, Ca2SiB2O7: chemical and TEM characterization. Am Mineral 85:1508–1511CrossRefGoogle Scholar
  30. Pavlov PV, Belov NV (1959) The structure of herderite, datolite, and gadolinite determined by direct methods. Sov Phys Crystallogr 4:300–314Google Scholar
  31. Perchiazzi N, Gualtieri AF, Merlino S, Kampf AR (2004) The atomic structure of bakerite and its relationship to datolite. Am Mineral 89:767–776CrossRefGoogle Scholar
  32. Peters L, Knorr K, Knapp M, Depmeier W (2005) Thermal expansion of gehlenite, Ca2Al[AlSiO7], and the related aluminates LnCaAl[Al2O7] with Ln = Tb, Sm. Phys Chem Minerals 32:546–551CrossRefGoogle Scholar
  33. Peters L, Knorr K, Katzke H, Knapp M, Depmeier W (2006) The transformation mechanism of the sodalite- to the melilite-topology: thermal expansion and decomposition of bicchulite-type to melilite-type compounds. Z Kristallogr 221:198–205Google Scholar
  34. Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352Google Scholar
  35. Rinaldi R, Gatta GD, Angel RJ (2010) Crystal chemistry and low-temperature behavior of datolite: a single crystal X-ray diffraction study. Am Mineral 95:1413–1421CrossRefGoogle Scholar
  36. Sugiyama K, Takéuchi Y (1985) Unusual thermal expansion of a B–O bond in the structure of danburite CaB2Si2O8. Z Kristallogr 173:293–304CrossRefGoogle Scholar
  37. Tarney J, Nicol AW, Marriner GF (1973) The thermal transformation of datolite, CaBSiO4(OH), to boron-melilite. Mineral Mag 39:158–175CrossRefGoogle Scholar
  38. Veron E, Garaga MN, Pelloquin D, Cadars S, Suchomel M, Suard E, Massiot D, Montoillout V, Matzen G, Allix M (2013) Synthesis and structure determination of CaSi1/3B2/3O8/3: a new calcium borosilicate. Inorg Chem 52:4250–4258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Crystallography, Institute of Earth SciencesSaint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Faculty of GeologyMoscow State UniversityMoscowRussia
  4. 4.Kola Science CentreMurmanskRussia

Personalised recommendations