Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 443–461 | Cite as

Co2+-doped diopside: crystal structure and optical properties

  • C. Gori
  • M. Tribaudino
  • F. Mezzadri
  • H. Skogby
  • U. Hålenius
Original Paper
  • 102 Downloads

Abstract

Synthetic clinopyroxenes along the CaMgSi2O6–CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV–VIS–NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g4 T 2g(F), 4 T 1g4 A 2g(F) and 4 T 1g4 T 1g(P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g4 T 2g(F) and the 4 T 1g4 T 1g(P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm−1 is caused by the 4 A 2g4 T 1g(F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm−1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6–CaCoSi2O6 solid solution.

Keywords

Pyroxenes Crystal structure Cobalt UV–VIS–NIR Crystal field 

Notes

Acknowledgements

We thank Michael Taran and an anonymous reviewer for comments that helped to improve the paper.

Supplementary material

269_2017_932_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1099 KB)

References

  1. Ardit M, Cruciani G, Dondi M (2012) Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. Am Mineral 97:1394–1401CrossRefGoogle Scholar
  2. Ardit M, Dondi M, Cruciani G (2014) On the structural relaxation around Cr3+ along binary solid solutions. Eur J Mineral 26:359–370CrossRefGoogle Scholar
  3. Ballhausen CJ, Weiner MA (1963) Introduction to ligand field theory. J Electrochem Soc 110:97C-97CCrossRefGoogle Scholar
  4. Bosi F, Hålenius U, D’Ippolito V, Andreozzi GB (2012) Blue spinel crystals in the MgAl2O4–CoAl2O4 series: II. Cation ordering over short range and long range scales. Am Miner 97:1834–1840CrossRefGoogle Scholar
  5. Bruno E, Carbonin S, Molin GM (1982) Crystal structure of Ca-rich clinopyroxenes on the CaMgSi2O6-Mg2Si2O6 join. Tscher Mineral Petr Mitt 29:223–240CrossRefGoogle Scholar
  6. Burnham CW, Clark JR, Papike JJ, Prewitt CT (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Zeits Krist 125:109–119CrossRefGoogle Scholar
  7. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University PressGoogle Scholar
  8. D’Ippolito V, Andreozzi GB, Hålenius U, Skogby H, Hametner K, Günther (2015) Color mechanisms in spinel: cobalt and iron interplay for the blue color. Phys Chem Miner 42:431–439CrossRefGoogle Scholar
  9. Dondi M, Zanelli C, Ardit M, Cruciani G (2011) Co-Doped Hardystonite, Ca2(Zn, Co)Si2O7, a New Blue Ceramic Pigment. J Am Ceram Soc 94:1025–1030CrossRefGoogle Scholar
  10. Dondi M, Ardit M, Cruciani G, Zanelli C (2014) Tetrahedrally cooordinated Co2+ in oxides and silicates: effect of local environment on optical properties. Am Miner 99:1736–1745CrossRefGoogle Scholar
  11. Dou Y (1990) Equations for calculating Dq and B. J Chem Edu 67:134CrossRefGoogle Scholar
  12. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  13. Ghose S, Wan C, Okamura FP (1987) Crystal structures of CaNiSi2O6 and CaCoSi2O6 and some crystal-chemical relations in C2/c clinopyroxenes. Am Miner 72:375–381Google Scholar
  14. Gori C, Tribaudino M, Mantovani L, Delmonte D, Mezzadri F, Gilioli E, Calestani G (2015) Ca-Zn solid solutions in C2/c pyroxenes: synthesis, crystal structure, and implications for Zn geochemistry. Am Miner 100:2209–2218CrossRefGoogle Scholar
  15. Gori C, Tribaudino M, Mantovani L, Gatta GD, Delmonte D, Mezzadri F, Gilioli E, Calestani G (2017) Synthesis and crystal structure of C2/c Ca(Co, Mg)Si2O6 pyroxenes: effect of the cationic substitution on the cell volume. Miner Mag 81:1129–1139CrossRefGoogle Scholar
  16. Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041Google Scholar
  17. Llusar M, Forés A, Badenes JA, Calbo J, Tena MA, Monrós G (2001) Colour analysis of some cobalt-based blue pigments. J Eur Ceram Soc 21:1121–1130CrossRefGoogle Scholar
  18. Mantovani L, Tribaudino M, Mezzadri F, Calestani G, Bromiley G (2013) The structure of (Ca,Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca,M2+)M2+Si2O6 pyroxenes (M2+= Co, Fe, Mg). Am Mineral 98:1241–1252CrossRefGoogle Scholar
  19. Mantovani L, Tribaudino M, Bertoni G, Salviati G, Bromiley G (2014) Solid solutions and phase transitions in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). Am Miner 99:704–711CrossRefGoogle Scholar
  20. Mantovani L, Tribaudino M, Dondi M, Zanelli C (2015) Synthesis and color performance of CaCoSi2O6 pyroxene, a new ceramic colorant. Dyes Pigm 120:118–125CrossRefGoogle Scholar
  21. Masse S, Boch P, Vaissière N (1999) Trapping of nickel and cobalt in CaNiSi2O6 and CaCoSi2O6 diopside-like phases in heat-treated cement. J Eur Ceram Soc 19:93–98CrossRefGoogle Scholar
  22. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658CrossRefGoogle Scholar
  23. Ozel E, Yurdakul H, Turan S, Ardit M, Cruciani G, Dondi M (2010) Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. J Eur Ceram Soc 30:3319–3329CrossRefGoogle Scholar
  24. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  25. Ross CR, Keppler H, Canil D, O’Neill HSC (1996) Structure and crystal-field spectra of Co3Al2 (SiO4)3 and (Mg, Ni)3Al2 (SiO4) 3 garnet. Am Miner 81:61–66CrossRefGoogle Scholar
  26. Rossi G, Oberti R, Dal Negro A, Molin GM, Mellini M (1987) Residual electron density of the M2 site in C2/c clinopyroxenes relationship with bulk chemistry and sub-solidus evolution. Phys Chem Miner 14:514–520CrossRefGoogle Scholar
  27. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  28. Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystallogr B 26:1046–1048CrossRefGoogle Scholar
  29. Sheldrick GM (1996) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, GöttingenGoogle Scholar
  30. Sheldrick GM (1997) SHELXL-97, program for crystal structure analysis. University of Göttingen, GöttingenGoogle Scholar
  31. Tabira Y, Ishizawa N, Marumo F (1993) Cobalt atoms at M(2) site in C2/c clinopyroxenes of the system CaMgSi2O6 (Di)–CaCoSi2O6 (CaCoPx). Min J 16:225–245CrossRefGoogle Scholar
  32. Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions. I and II. J Phys Soc Jpn 9:753–779CrossRefGoogle Scholar
  33. Taran MN, Rossman GR (2001) Optical spectra of Co2+ in three synthetic silicate minerals. Am Mineral 86:889–895CrossRefGoogle Scholar
  34. Taran MN, Ohashi H, Koch-Müller M (2008) Optical spectroscopic study of synthetic NaScSi2O6–CaNiSi2O6 pyroxenes at normal and high pressures. Phys Chem Miner 35:117–127CrossRefGoogle Scholar
  35. Taran MN, Koch-Müller M, Feenstra A (2009) Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. Am Mineral 94:1647–1652CrossRefGoogle Scholar
  36. Tribaudino M, Ohashi H (2011) High temperature structure and thermal expansion of Co3Al2Si3O12 garnet. Periodico di Mineralogia 80:135–144Google Scholar
  37. Ullrich K, Ott O, Langer K, Becker KD (2004) Temperature dependence of the polarized electronic absorption spectra of olivines. Part II—cobalt-containing olivines. Phys Chem Miner 31:247–260CrossRefGoogle Scholar
  38. Underhill AE, Billing DE (1966) Calculations of the racah parameter B for nickel (II) and cobalt (II) compounds. Nature 210:834–835CrossRefGoogle Scholar
  39. White BW, McCarthy GJ, Scheetz BE (1971) Optical spectra of chromium, nickel, and cobalt-containing pyroxenes. Am Mineral 56:72–89Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
  2. 2.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations