Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 435–442 | Cite as

Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

  • Tobias Beirau
  • William D. Nix
  • Herbert Pöllmann
  • Rodney C. Ewing
Original Paper


Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062–1096, 1972; Weber Nuc Instr Met Phys Res B 166–167:98–106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson’s ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson’s ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3  × 1018 α-decays/g.


Zircon ZrSiO4 Radiation damage Mechanical properties Nanoindentation Damage accumulation 



Financial support by the Deutsche Forschungsgemeinschaft DFG (BE 5456/2-1) is gratefully acknowledged (T.B.). R.C.E. gratefully acknowledges financial support by the US Department of Energy through the Energy Frontier Research Center “Materials Science of Actinides” under Award Number DE-SC0001089. The constructive comments and helpful suggestions of two anonymous reviewers are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson EB, Burakov BE, Pazukhin EM (1993) High-uranium zircon from Chernobyl lavas. Radiochim Acta 60:149–151CrossRefGoogle Scholar
  2. Ballato A (1996) Poisson’s ratio for tetragonal, hexagonal, and cubic crystals. IEEE Trans Ultrason Ferroelectr Freq Control 43:56–62CrossRefGoogle Scholar
  3. Beirau T, Nix WD, Ewing RC, Schneider GA, Groat LA, Bismayer U (2016a) Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: a nanoindentation and Raman spectroscopic study. Am Mineral 101:399–406CrossRefGoogle Scholar
  4. Beirau T, Nix WD, Bismayer U, Boatner LA, Isaacson SG, Ewing RC (2016b) Anisotropic mechanical properties of zircon and the effect of radiation damage. Phys Chem Miner 43:627–638CrossRefGoogle Scholar
  5. Burakov BE (1993) A study of high-uranium technogeneous zircon (Zr, U)SiO4 from Chernobyl “lavas” in connection with the problem of creating a crystalline matrix for high-level waste disposal. Proc Int Conf SAFE WASTE 93(2):19–33Google Scholar
  6. Burakov BE, Hanchar JM, Zamoryanskaya MV, Garbuzov VM, Zirlin ZA (2002) Synthesis and investigation of Pu-doped single crystal zircon (Zr, Pu)SiO4. Radiochim Acta 90:95–97CrossRefGoogle Scholar
  7. Cazzani A, Rovati M (2005) Extrema of Young’s modulus for elastic solids with tetragonal symmetry. Int J Solids Struct 42:5057–5096CrossRefGoogle Scholar
  8. Chakoumakos BC, Oliver WC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavyparticle irradiation dose: I. In situ α-decay event damage. Radiat Eff Defects Solids 118:393–403CrossRefGoogle Scholar
  9. Deer WA, Howie RA, Zussman J (1997) Rock forming minerals: orthosilicates. The Geological Society, London, p 918Google Scholar
  10. Ellsworth S, Navrotsky A, Ewing RC (1994) Energetics of radiation damage in natural zircon (ZrSiO4). Phys Chem Miner 21:140–149CrossRefGoogle Scholar
  11. Ewing RC (1973) Vickers hardness and reflectance determinations for metamict AB2O6-type rare earth Ti-Nb-Ta oxides. Am Mineral 58:942–944Google Scholar
  12. Ewing RC (2007a) Ceramic matrices for plutonium disposition. Prog Nucl Energy 49:635–643CrossRefGoogle Scholar
  13. Ewing RC (2007b) Displaced by radiation. Nature 445:161–162CrossRefGoogle Scholar
  14. Ewing RC (2011) Actinides and radiation effects: impact on the backend of the nuclear fuel cycle. Mineral Mag 75:2359–2377CrossRefGoogle Scholar
  15. Ewing RC, Lutze W, Weber WJ (1995) Zircon: a host-phase for the disposal of weapons plutonium. J Mater Res 10:243–246CrossRefGoogle Scholar
  16. Farnan I, Salje EKH (2001) The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance. J Appl Phys 89:2084–2090CrossRefGoogle Scholar
  17. Farnan I, Cho H, Weber WJ (2007) Quantification of actinide α-radiation damage in minerals and ceramics. Nature 445:190–193CrossRefGoogle Scholar
  18. Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M (2005) Hardening and microstructural evolution in A533B steels under high-dose electron irradiation. J Nuc Mater 340:247–258CrossRefGoogle Scholar
  19. Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29:420–429CrossRefGoogle Scholar
  20. Gibbons JF (1972) Ion implantation in semiconductors—part II: damage production and annealing. Proc IEEE 60:1062–1096CrossRefGoogle Scholar
  21. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837CrossRefGoogle Scholar
  22. Gregg DJ, Karatchevtseva I, Thorogood GJ, Davis J, Bell BDC, Jackson M, Dayal P, Ionescu M, Triani G, Short K, Lumpkin GR, Vance ER (2014) Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type. J Nuc Mater 446:224–231CrossRefGoogle Scholar
  23. Hawthorne FC, Groat LA, Raudsepp M, Ball NA, Kimata M, Spike F, Gaba R, Halden NM, Lumpkin GR, Ewing RC et al (1991) Alpha-decay damage in titanite. Am Mineral 76:370–396Google Scholar
  24. Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr A 8:291–300CrossRefGoogle Scholar
  25. Joslin DL, Oliver WC (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res 5:123–126CrossRefGoogle Scholar
  26. Keller C (1963) Untersuchungen über die germanate und silicate des typs ABO4 der vierwertigen elemente thorium bis americium. Nukleonik 5:41–47Google Scholar
  27. Lenz C, Nasdala L (2015) A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am Mineral 100:1123–1133CrossRefGoogle Scholar
  28. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532Google Scholar
  29. Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:119–138CrossRefGoogle Scholar
  30. Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231CrossRefGoogle Scholar
  31. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  32. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20CrossRefGoogle Scholar
  33. Oliver WC, McCallum JC, Chakoumakos BC, Boatner LA (1994) Hardness and elastic modulus of zircon as a function of heavyparticle irradiation dose. Radiat Eff Defects Solids Inc Plasma Sci Plasma Technol 132:131–141CrossRefGoogle Scholar
  34. Özkan H (1976) Effect of nuclear radiation on the elastic moduli of zircon. J Appl Phys 47:4772–4779CrossRefGoogle Scholar
  35. Palenik CS, Nasdala L, Ewing RC (2003) Radiation damage in zircon. Am Mineral 88:770–781CrossRefGoogle Scholar
  36. Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A 253:151–159CrossRefGoogle Scholar
  37. Ríos S, Salje EKH, Zhang M, Ewing RC (2000) Amorphization in zircon: evidence for direct impact damage. J Phys Condens Matter 12:2401–2412CrossRefGoogle Scholar
  38. Robinson K, Gibbs GV, Ribbe PH (1971) The structure of zircon: a comparison with garnet. Am Mineral 56:782–790Google Scholar
  39. Salje EKH (2006) Elastic softening of zircon by radiation damage. Appl Phys Lett 89:131902Google Scholar
  40. Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116CrossRefGoogle Scholar
  41. Salje EKH, Taylor RD, Safarik DJ, Lashley JC, Groat LA, Bismayer U, Evans RJ, Friedman R (2012) Evidence for direct impact damage in metamict titanite CaTiSiO5. J Phys Condens Matter 24:052202CrossRefGoogle Scholar
  42. Shojaee SA, Qi Y, Wang YQ, Mehner A, Lucca DA (2017) Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films. Sci Rep 7:40100CrossRefGoogle Scholar
  43. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  44. Speer JA (1980) The actinide orthosilicates. In: Ribbe PH (ed) Reviews in mineralogy and geochemistry, orthosilicates, vol 5. Mineralogical Society of America, Chantilly, pp 113–135Google Scholar
  45. Speer JA, Cooper BJ (1982) Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates. Am Mineral 67:804–808Google Scholar
  46. Walter KH (1965) Ternäre Oxide des drei-bis-sechswertigen Americiums. Kernforschungszentrum Karlsruhe, Gesellschaft für Kernforschung M.B.H., KarlsruheGoogle Scholar
  47. Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697CrossRefGoogle Scholar
  48. Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiat Eff Defects Solids 115:341–349CrossRefGoogle Scholar
  49. Weber WJ (1993) Alpha-decay-induced amorphization in complex silicate structures. J Am Ceram Soc 76:1729–1738CrossRefGoogle Scholar
  50. Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nuc Instr Met Phys Res B 166–167:98–106CrossRefGoogle Scholar
  51. Weber WJ, Wald JW, Matzke H (1986) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7. J Nuc Mater 138:196–209CrossRefGoogle Scholar
  52. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698CrossRefGoogle Scholar
  53. Weber WJ, Ewing RC, Catlow CRA, de la Rubia TD, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484CrossRefGoogle Scholar
  54. Zhang M, Salje EKH (2001) Infrared spectroscopic analysis of zircon: radiation damage and the metamict state. J Phys Condens Matter 13:3057–3071CrossRefGoogle Scholar
  55. Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000a) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12:1915–1925CrossRefGoogle Scholar
  56. Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schluter J, Ewing RC (2000b) Annealing of alpha-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131–3148CrossRefGoogle Scholar
  57. Zhang M, Salje EKH, Ewing RC, Farnan I, Ríos S, Schluter J, Leggo P (2000c) Alpha-decay damage and recrystallization in zircon: evidence for an intermediate state from infrared spectroscopy. J Phys Condens Matter 12:5189–5199CrossRefGoogle Scholar
  58. Zhang M, Salje EKH, Ewing RC (2002) Infrared spectra of Si–O overtones, hydrous species, and U ions in metamict zircon: radiation damage and recrystallization. J Phys Condens Matter 14:3333–3352CrossRefGoogle Scholar
  59. Zhang M, Salje EKH, Ewing RC, Daniel P, Geisler T (2004) Applications of near-infrared FT-Raman spectroscopy in metamict and annealed zircon: oxidation state of U ions. Phys Chem Miner 31:405–414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Geosciences and Geography, Mineralogy/GeochemistryMartin Luther University Halle-WittenbergHalleGermany
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Geological SciencesStanford UniversityStanfordUSA

Personalised recommendations