Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 405–422 | Cite as

Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron

  • Paolo Lotti
  • G. Diego Gatta
  • Nicola Demitri
  • Giorgio Guastella
  • Silvia Rizzato
  • Marco Aldo Ortenzi
  • Fabrizio Magrini
  • Davide Comboni
  • Alessandro Guastoni
  • Maria Teresa Fernandez-Diaz
Original Paper

Abstract

Colemanite, CaB3O4(OH)3⋅H2O, is the most common hydrous Ca-borate, as well as a major mineral commodity of boron. In this study, we report a thorough chemical analysis and the low-temperature behavior of a natural sample of colemanite by means of a multi-methodological approach. From the chemical point of view, the investigated sample resulted to be relatively pure, its composition being very close to the ideal one, with only a minor substitution of Sr2+ for Ca2+. At about 270.5 K, a displacive phase transition from the centrosymmetric P21/a to the acentric P21 space group occurs. On the basis of in situ single-crystal synchrotron X-ray (down to 104 K) and neutron diffraction (at 20 K) data, the hydrogen-bonding configuration of both the polymorphs and the structural modifications at the atomic scale at varying temperatures are described. The asymmetric distribution of ionic charges along the [010] axis, allowed by the loss of the inversion center, is likely responsible for the reported ferroelectric behavior of colemanite below the phase transition temperature.

Keywords

Colemanite Borates Low temperature Phase transition Neutron diffraction Synchrotron Ferroelectric behavior 

Notes

Acknowledgements

Emanuela Schingaro, Mario Tribaudino and the Editor, Milan Rieder, are gratefully thanked for the valuable comments and suggestions, which improved the manuscript quality. ELETTRA (Trieste, Italy) and ILL (Grenoble, France) are acknowledged for the allocation of beamtime.

Supplementary material

269_2017_929_MOESM1_ESM.docx (368 kb)
Supplementary material 1 (DOCX 367 KB)
269_2017_929_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 22 KB)
269_2017_929_MOESM3_ESM.cif (16 kb)
Supplementary material 3 (CIF 15 KB)
269_2017_929_MOESM4_ESM.cif (16 kb)
Supplementary material 4 (CIF 16 KB)
269_2017_929_MOESM5_ESM.cif (16 kb)
Supplementary material 5 (CIF 16 KB)
269_2017_929_MOESM6_ESM.cif (16 kb)
Supplementary material 6 (CIF 16 KB)
269_2017_929_MOESM7_ESM.cif (16 kb)
Supplementary material 7 (CIF 16 KB)
269_2017_929_MOESM8_ESM.cif (16 kb)
Supplementary material 8 (CIF 16 KB)
269_2017_929_MOESM9_ESM.cif (16 kb)
Supplementary material 9 (CIF 16 KB)
269_2017_929_MOESM10_ESM.cif (16 kb)
Supplementary material 10 (CIF 16 KB)
269_2017_929_MOESM11_ESM.cif (17 kb)
Supplementary material 11 (CIF 17 KB)
269_2017_929_MOESM12_ESM.cif (18 kb)
Supplementary material 12 (CIF 17 KB)
269_2017_929_MOESM13_ESM.cif (18 kb)
Supplementary material 13 (CIF 17 KB)
269_2017_929_MOESM14_ESM.cif (18 kb)
Supplementary material 14 (CIF 17 KB)
269_2017_929_MOESM15_ESM.cif (18 kb)
Supplementary material 15 (CIF 17 KB)
269_2017_929_MOESM16_ESM.cif (18 kb)
Supplementary material 16 (CIF 17 KB)
269_2017_929_MOESM17_ESM.cif (18 kb)
Supplementary material 17 (CIF 17 KB)
269_2017_929_MOESM18_ESM.cif (16 kb)
Supplementary material 18 (CIF 16 KB)

References

  1. Burns PC, Hawthorne FC (1993) Hydrogen bonding in colemanite: an X-ray and structure-energy study. Can Miner 31:297–304Google Scholar
  2. Christ CL, Clark JR, Evans HT (1954) The stucture of colemanite, CaB3O4(OH)3⋅H2O, determined by the direct method of Hauptman and Karle. Acta Cryst 7:453–454CrossRefGoogle Scholar
  3. Christ CL, Clark JR, Evans HT (1958) Studies of borate minerals (III): the crystal structure of colemanite, CaB3O4(OH)3⋅H2O. Acta Cryst 11:761–770CrossRefGoogle Scholar
  4. Chynoweth AG (1957) The pyroelectric behaviour of colemanite. Acta Cryst 10:511–514CrossRefGoogle Scholar
  5. Clark JR, Appleman DE, Christ CL (1964) Crystal chemistry and structure refinement of five hydrated calcium borates. J Inorg Nucl Chem 26:73–95CrossRefGoogle Scholar
  6. Coppens P, Leiserowitz L, Rabinovich D (1965) Calculation of absorption corrections for camera and diffractometer data. Acta Cryst 18:1035–1038CrossRefGoogle Scholar
  7. Crangle RD (2015) Boron. In: US Geological Survey (ed) Minerals yearbook: volume I—metals and minerals. US Geological Survey, Reston, pp 13.1–13.8Google Scholar
  8. Fenzl W, Schuppler S (1994) Thermal-wave investigation of the ferroelectric phase transition in colemanite. Z Phys B 93:343–348CrossRefGoogle Scholar
  9. Garrett DE (1998) Borates. Handbook of deposits, processing, properties and use. Academic Press, CambridgeGoogle Scholar
  10. Gatta GD (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Micropor Mesopor Mater 128:78–84CrossRefGoogle Scholar
  11. Gatta GD, Rotiroti N, Fisch M, Armbruster T (2010a) Stability at high pressure, elastic behavior and pressure-induced structural evolution of “Al5BO9”, a mullite-type ceramic material. Phys Chem Miner 37:227–236CrossRefGoogle Scholar
  12. Gatta GD, Vignola P, McIntyre GJ, Diella V (2010b) On the crystal-chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: a single-crystal neutron diffraction study at 300 and 20 K. Am Miner 95:1467–1472CrossRefGoogle Scholar
  13. Gatta GD, Vignola P, Lee Y (2011) Stability of (Cs,K)Al4Be5B11O28 (londonite) at high pressure and high temperature: a potential neutron absorber material. Phys Chem Miner 38:429–434CrossRefGoogle Scholar
  14. Gatta GD, Lotti P, Merlini M, Liermann H-P, Fisch M (2013) High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. J Am Cer Soc 96:2583–2592CrossRefGoogle Scholar
  15. Gatta GD, Lotti P, Comboni D, Merlini M, Vignola P, Liermann H-P (2017) High-pressure behaviour of (Cs,K)Al4Be5B11O28 (londonite): a single-crystal synchrotron diffraction study up to 26 GPa. J Am Cer Soc 100:4893–4901CrossRefGoogle Scholar
  16. Gavrilova ND, Lotonov AM, Antonenko AA (2006) Ferroelectric properties of colemanite. Inorg Mater 42:777–781CrossRefGoogle Scholar
  17. Giron D (1995) Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim Acta 248:1–59CrossRefGoogle Scholar
  18. Gonzalez-Platas J, Alvaro M, Nestola F, Angel R (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382CrossRefGoogle Scholar
  19. Hainsworth FN, Petch HE (1966) The structural basis of ferroelectricity in colemanite. Can J Phys 44:3083–3107CrossRefGoogle Scholar
  20. Helvaci C (1995) Stratigraphy, mineralogy, and genesis of the Bigadiç deposits, Western Turkey. Econ Geol 90:1237–1260CrossRefGoogle Scholar
  21. Helvaci C (2015) Geological features of neogene basins hosting borate deposits: on overview of deposits and future forecasts, Turkey. Bull Min Res Exp 151:169–215Google Scholar
  22. Helvaci C, Alonso RN (2000) Borate deposits of Turkey and Argentina; a summary and geological comparison. Turk J Earth Sci 9:1–27Google Scholar
  23. Helvaci C, Öztürk YY, Emmermann A (2017) Fluorescence survey of Turkish borate minerals: comparative measurements of fluorescence spectra of the most important borate mineral species, Turkey. N Jb Miner Abh 194:1–17CrossRefGoogle Scholar
  24. Holuj F, Petch HE (1960) A nuclear magnetic resonance study of colemanite. Can J Phys 38:515–546CrossRefGoogle Scholar
  25. Howard JAK, Johnson O, Schultz AJ, Stringer AM (1987) Determination of the neutron absorption cross section for hydrogen as a function of wavelength with a pulsed neutron source. J Appl Crystallogr 20:120–122CrossRefGoogle Scholar
  26. Kabsch W (2010) XDS. Acta Cryst D66:125–132Google Scholar
  27. Kawakami K (2007) Reversibility of enantiotropically related polymorphic transformations from a practical viewpoint: thermal analysis of kinetically reversible/irreversible polymorphic transformations. J Pharm Sci 96:982–989CrossRefGoogle Scholar
  28. Lausi A, Polentarutti M, Onesti S, Plaisier JR, Busetto E, Bais G, Barba L, Cassetta A, Campi G, Lamba D, Pifferi E, Mande SC, Sarma DD, Sharma SM, Paolucci G (2015) Status of the crystallography beamlines at Elettra. Eur Phys J Plus 130:43CrossRefGoogle Scholar
  29. Lehmann MS, Kuhs W, McIntyre GJ, Wilkinson C, Allibon J (1989) On the use of a small two-dimensional position-sensitive detector in neutron diffraction. J Appl Crystallogr 22:562–568CrossRefGoogle Scholar
  30. Lin J, Pan Y, Chen N, Mao M, Li R (2011) Arsenic incorporation in colemanite from borate deposits: data from ICP-MS, µ-SXRF, XAFS and EPR analyses. Can Miner 49:809–822CrossRefGoogle Scholar
  31. Lotti P, Gatta GD, Comboni D, Guastella G, Merlini M, Guastoni A, Liermann H-P (2017) High-pressure behavior and P-induced phase transition of CaB3O4(OH)3⋅H2O (colemanite). J Am Cer Soc 100:2209–2220CrossRefGoogle Scholar
  32. Momma K, Izumi F (2011) Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  33. Perloff A, Block S (1960) Low temperature phase transition of colemanite. Am Miner 45:229Google Scholar
  34. Petricek V, Dusak M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352Google Scholar
  35. Slabkaya GL, Lotonov AM, Gavrilova ND (2004) Low-frequency dielectric spectroscopy and electrical properties of Ca[B3O4(OH)3]⋅H2O single crystals near the phase transition. Inorg Mater 40:1489–1494Google Scholar
  36. US Geological Survey (2007) Mineral commodity summaries 2006. US Geological Survey, RestonGoogle Scholar
  37. US Geological Survey (2017) Mineral commodity summaries 2016. US Geological Survey, RestonGoogle Scholar
  38. Wieder HH (1959) Ferroelectric properties of colemanite. J Appl Phys 30:1010–1018CrossRefGoogle Scholar
  39. Wieder HH, Clawson AR, Parkerson CR (1962) Ferroelectric and pyroelectric properties of mineral and synthetic colemanite. J Appl Phys 33:1720–1725CrossRefGoogle Scholar
  40. Wilkinson C, Khamis HW, Stansfield RFD, McIntyre GJ (1988) Integration of single-crystal reflections using area multidetectors. J Appl Crystallogr 21:471–478CrossRefGoogle Scholar
  41. Wilson AJC, Prince E (1999) International tables for crystallography. Volume C: mathematical, physical and chemical tables, 2nd edn. Kluwer, DordrechtGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Paolo Lotti
    • 1
    • 2
  • G. Diego Gatta
    • 1
    • 3
  • Nicola Demitri
    • 2
  • Giorgio Guastella
    • 4
  • Silvia Rizzato
    • 5
  • Marco Aldo Ortenzi
    • 5
    • 6
  • Fabrizio Magrini
    • 1
  • Davide Comboni
    • 1
  • Alessandro Guastoni
    • 7
  • Maria Teresa Fernandez-Diaz
    • 8
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di MilanoMilanoItaly
  2. 2.Elettra Sincrotrone Trieste S.c.P.A.BasovizzaItaly
  3. 3.CNR-Istituto di Cristallografia, Sede di BariBariItaly
  4. 4.Agenzia delle Dogane e dei Monopoli, Direzione Regionale per la Lombardia, Laboratorio e Servizi ChimiciMilanoItaly
  5. 5.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanoItaly
  6. 6.CRC Materiali Polimerici “LaMPo”, Dipartimento di ChimicaUniversità degli Studi di MilanoMilanoItaly
  7. 7.Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly
  8. 8.Institut Laue-LangevinGrenoble-Cedex 9France

Personalised recommendations