Physics and Chemistry of Minerals

, Volume 45, Issue 5, pp 397–404 | Cite as

Sound velocities of skiagite–iron–majorite solid solution to 56 GPa probed by nuclear inelastic scattering

  • D. M. Vasiukov
  • L. Ismailova
  • I. Kupenko
  • V. Cerantola
  • R. Sinmyo
  • K. Glazyrin
  • C. McCammon
  • A. I. Chumakov
  • L. Dubrovinsky
  • N. Dubrovinskaia
Original Paper


High-pressure experimental data on sound velocities of garnets are used for interpretation of seismological data related to the Earth’s upper mantle and the mantle transition zone. We have carried out a Nuclear Inelastic Scattering study of iron-silicate garnet with skiagite (77 mol%)–iron–majorite composition in a diamond anvil cell up to 56 GPa at room temperature. The determined sound velocities are considerably lower than sound velocities of a number of silicate garnet end-members, such as grossular, pyrope, Mg–majorite, andradite, and almandine. The obtained sound velocities have the following pressure dependencies: V p [km/s] = 7.43(9) + 0.039(4) × P [GPa] and V s [km/s] = 3.56(12) + 0.012(6) × P [GPa]. We estimated sound velocities of pure skiagite and khoharite, and conclude that the presence of the iron–majorite component in skiagite strongly decreases V s . We analysed the influence of Fe3+ on sound velocities of garnet solid solution relevant to the mantle transition zone and consider that it may reduce sound velocities up to 1% relative to compositions with only Fe2+ in the cubic site.


Nuclear inelastic scattering Sound velocities Skiagite Khoharite Garnet Mantle transition zone 



The authors are grateful to Dr. R. Mittal for the provided data. We thank the European Synchrotron Radiation Facility for the provision of synchrotron radiation (ID18). N.D. thanks the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, projects no. DU 954-8/1 and DU 95411/1) and the Federal Ministry of Education and Research, Germany (BMBF, grants no. 5K13WC3 and 5K16WC1) for financial support. C.M. and L.D. acknowledge DFG funding through projects MC 3–18/1 and MC 3–20/1 and the CarboPaT Research Unit FOR2125. Partial support was also provided by the German Academic Exchange Service (DAAD).

Supplementary material

269_2017_928_MOESM1_ESM.pdf (240 kb)
Supplementary material 1 (PDF 240 KB)


  1. Achterhold K, Keppler C, Ostermann A, Van Bürck U, Sturhahn W, Alp E, Parak F (2002) Vibrational dynamics of myoglobin determined by the phonon-assisted Mössbauer effect. Phys Rev E 65(5):051916CrossRefGoogle Scholar
  2. Angel R, Finger L, Hazen R, Kanzaki M, Weidner D, Liebermann R, Veblen D (1989) Letter. Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Miner 74(3–4):509–512Google Scholar
  3. Arimoto T, Gréaux S, Irifune T, Zhou C, Higo Y (2015) Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K. Phys Earth Planet Inter 246:1–8CrossRefGoogle Scholar
  4. Baima J, Ferrabone M, Orlando R, Erba A, Dovesi R (2016) Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations. Phys Chem Miner 43(2):137–149CrossRefGoogle Scholar
  5. Bindi L, Dymshits AM, Bobrov AV, Litasov KD, Shatskiy AF, Ohtani E, Litvin YA (2011) Letter. Crystal chemistry of sodium in the Earth’s interior: the structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 °C. Am Miner 96(2–3):447–450CrossRefGoogle Scholar
  6. Chantel J, Manthilake GM, Frost DJ, Beyer C, Ballaran TB, Jing Z, Wang Y (2016) Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300 K. Am Miner 101(4):991–997CrossRefGoogle Scholar
  7. Chumakov A, Rüffer R (1998) Nuclear inelastic scattering. Hyperfine Interact 113(1):59–79CrossRefGoogle Scholar
  8. Dewaele A, Torrent M, Loubeyre P, Mezouar M (2008) Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys Rev B 78(10):104102CrossRefGoogle Scholar
  9. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356CrossRefGoogle Scholar
  10. Erba A, Mahmoud A, Orlando R, Dovesi R (2014) Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Miner 41(2):151–160CrossRefGoogle Scholar
  11. Gwanmesia GD, Wang L, Heady A, Liebermann RC (2014) Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures. Phys Earth Planet Inter 228:80–87CrossRefGoogle Scholar
  12. Hazen RM, Finger LW (1978) Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am Miner 63(3–4):297–303Google Scholar
  13. Hu M, Sturhahn W, Toellner T, Hession P, Sutter J, Alp E (1999) Data analysis for inelastic nuclear resonant absorption experiments. Nucl Instrum Method Phys Res Sect A 428(2):551–555CrossRefGoogle Scholar
  14. Hu MY, Sturhahn W, Toellner TS, Mannheim PD, Brown DE, Zhao J, Alp EE (2003) Measuring velocity of sound with nuclear resonant inelastic X-ray scattering. Phys Rev B 67(9):094304CrossRefGoogle Scholar
  15. Irifune T, Ringwood A (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117(1–2):101–110CrossRefGoogle Scholar
  16. Irifune T, Sekine T, Ringwood A, Hibberson W (1986) The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth Planet Sci Lett 77(2):245–256CrossRefGoogle Scholar
  17. Irifune T, Higo Y, Inoue T, Kono Y, Ohfuji H, Funakoshi K (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451(7180):814–817CrossRefGoogle Scholar
  18. Ismailova L, Bobrov A, Bykov M, Bykova E, Cerantola V, Kantor I, Kupenko I, McCammon C, Dyadkin V, Chernyshov D, Pascarelli S, Chumakov A, Dubrovinskaia N, Dubrovinsky L (2015) High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure. Am Miner 100(11–12):2650–2654CrossRefGoogle Scholar
  19. Ismailova L, Bykov M, Bykova E, Bobrov A, Kupenko I, Cerantola V, Vasiukov D, Dubrovinskaia N, McCammon C, Hanfland M, Glazyrin K, Liermann HP, Chumakov A, Dubrovinsky L (2017) Effect of composition on compressibility of skiagite-Fe-majorite garnet. Am Miner 102(1):184–191CrossRefGoogle Scholar
  20. Jiang F, Speziale S, Shieh SR, Duffy TS (2004) Single-crystal elasticity of andradite garnet to 11 GPa. J Phys Condens Matter 16(14):S1041CrossRefGoogle Scholar
  21. Kiseeva E, Vasiukov D, Wood B, McCammon C, Stachel T, Bykov M, Bykova E, Cerantola V, Chumakov A, Harris J, Dubrovinsky L (2017) Oxidised iron in garnets from the mantle transition zone. Nat Geosci Rev (accepted) Google Scholar
  22. Kohn V, Chumakov A (2000) DOS: Evaluation of phonon density of states from nuclear resonant inelastic absorption. Hyperfine Interact 125(1–4):205–221CrossRefGoogle Scholar
  23. Kohn V, Chumakov A, Rüffer R (1998) Nuclear resonant inelastic absorption of synchrotron radiation in an anisotropic single crystal. Phys Rev B 58(13):8437CrossRefGoogle Scholar
  24. Kono Y, Gréaux S, Higo Y, Ohfuji H, Irifune T (2010) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1650 K. J Earth Sci 21(5):782–791CrossRefGoogle Scholar
  25. Lacivita V, Erba A, Dovesi R, D’Arco P (2014) Elasticity of grossular–andradite solid solution: an ab initio investigation. Phys Chem Chem Phys 16(29):15331–15338CrossRefGoogle Scholar
  26. Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150(4):239–263CrossRefGoogle Scholar
  27. McCammon C, Ross N (2003) Crystal chemistry of ferric iron in (Mg,Fe)(Si,Al)O3 majorite with implications for the transition zone. Phys Chem Miner 30(4):206–216CrossRefGoogle Scholar
  28. Milman V, Akhmatskaya E, Nobes R, Winkler B, Pickard C, White J (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta Crystallogr Sect B Struct Sci 57(2):163–177CrossRefGoogle Scholar
  29. Mittal R, Chaplot S, Choudhury N, Loong CK (2000) Inelastic neutron scattering and lattice-dynamics studies of almandine Fe3Al2Si3O12. Phys Rev B 61(6):3983CrossRefGoogle Scholar
  30. Mittal R, Chaplot S, Choudhury N (2001) Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine M3Al2Si3O12 (M = Mg, Ca, and Mn). Phys Rev B 64(9):094302CrossRefGoogle Scholar
  31. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRefGoogle Scholar
  32. Papagelis K, Kanellis G, Ves S, Kourouklis G (2002) Lattice dynamical properties of the rare earth aluminum garnets (RE3Al5O12). Phys Status Solidi B 233(1):134–150CrossRefGoogle Scholar
  33. Ricolleau A, Perrillat JP, Fiquet G, Daniel I, Matas J, Addad A, Menguy N, Cardon H, Mezouar M, Guignot N (2010) Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J Geophys Res Solid Earth 115(B8)Google Scholar
  34. Ringwood A (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55(8):2083–2110CrossRefGoogle Scholar
  35. Rodehorst U, Geiger CA, Armbruster T (2002) The crystal structures of grossular and spessartine between 100 and 600 K and the crystal chemistry of grossular-spessartine solid solutions. Am Miner 87(4):542–549CrossRefGoogle Scholar
  36. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449(7161):456–458CrossRefGoogle Scholar
  37. Rüffer R, Chumakov AI (1996) Nuclear resonance beamline at ESRF. Hyperfine Interact 97(1):589–604CrossRefGoogle Scholar
  38. Sinogeikin SV, Bass JD (2002) Elasticity of majorite and a majorite-pyrope solid solution to high pressure: implications for the transition zone. Geophys Res Lett 29(2):4-1–4-4CrossRefGoogle Scholar
  39. Sturhahn W, Chumakov A (1999) Lamb–Mössbauer factor and second-order Doppler shift from inelastic nuclear resonant absorption. Hyperfine Interact 123(1–4):809–824CrossRefGoogle Scholar
  40. Sturhahn W, Jackson JM (2007) Geophysical applications of nuclear resonant spectroscopy. In: Ohtani E (ed) Advances in high-pressure mineralogy. Geological Society of America, Boulder, COGoogle Scholar
  41. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Miner Petrol 150(5):505–522CrossRefGoogle Scholar
  42. Wood BJ, Kiseeva ES, Matzen AK (2013) Garnet in the Earth’s mantle. Elements 9(6):421–426CrossRefGoogle Scholar
  43. Woodland A, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 214(1):295–310CrossRefGoogle Scholar
  44. Woodland AB, Ross CR (1994) A crystallographic and Mössbauer spectroscopy study of Fe3 2+Al2Si3O12-Fe3 2+Fe2 3+Si3O12, (almandine-“skiagite”) and Ca3Fe2 3+Si3O12-Fe3 2+Fe2 3+Si3O12 (andradite-“skiagite”) garnet solid solutions. Phys Chem Miner 21(3):117–132CrossRefGoogle Scholar
  45. Woodland A, Angel R, Koch M, Kunz M, Miletich R (1999) Equations of state for Fe3 2+ Fe2 3+ Si3O12 “skiagite” garnet and Fe2SiO4–Fe3O4 spinel solid solutions. J Geophys Res Solid Earth 104(B9):20049–20058CrossRefGoogle Scholar
  46. Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y (2017) Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv 3(4):e1601589CrossRefGoogle Scholar
  47. Zhou C, Gréaux S, Nishiyama N, Irifune T, Higo Y (2014) Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys Earth Planet Inter 228:97–105CrossRefGoogle Scholar
  48. Zou Y, Irifune T, Gréaux S, Whitaker ML, Shinmei T, Ohfuji H, Negishi R, Higo Y (2012) Elasticity and sound velocities of polycrystalline Mg3Al2(SiO4)3 garnet up to 20 GPa and 1700 K. J Appl Phys 112(1):014910CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratory of CrystallographyUniversität BayreuthBayreuthGermany
  2. 2.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  3. 3.Skolkovo Innovation CenterSkolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Institut für MineralogieUniversität MünsterMünsterGermany
  5. 5.ESRF-The European Synchrotron, CS40220Grenoble Cedex 9France
  6. 6.Photon Science, Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations