Physics and Chemistry of Minerals

, Volume 45, Issue 3, pp 279–292 | Cite as

Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

  • Yurii V. Seryotkin
  • Ella V. Sokol
  • Svetlana N. Kokh
  • Mikhail N. Murashko
Original Paper

Abstract

Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40–0.50 was found in mineral assemblages of the Ma’aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite–thaumasite solid solution → ettringite → ettringite–bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at ~11–12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10–0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40–0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca–O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

Keywords

Cr3+–ettringite Bentorite Chromium Crystal structure Morphology 

Notes

Acknowledgements

The study was supported by the Russian Science Foundation, Grant 17-17-01056.

Supplementary material

269_2017_917_MOESM1_ESM.doc (327 kb)
Supplementary material 1 (DOC 327 kb)

References

  1. Andreeva EP, Sanzhaasurén R (1977) Investigation of the processes of chemical interaction in aqueous suspensions of tetracalcium aluminoferrite in the presence of gypsum dihydrate. Coll J USSR 39:197–207Google Scholar
  2. Atkins M, Macphee D, Kindness A, Glasser FP (1991) Solubility properties of ternary and quaternary compounds in the CaO–Al2O3–SO3–H2O system. Cem Concr Res 21:991–998. doi: 10.1016/0008-8846(91)90058-P CrossRefGoogle Scholar
  3. Atkins M, Glasser FP, Kindness A (1992) Cement hydrate phases: solubility at 25°C. Cem Concr Res 22:241–246. doi: 10.1016/0008-8846(92)90062-Z CrossRefGoogle Scholar
  4. Bannister FA, Hey MH, Bernal JD (1936) Ettringite from Scawt Hill Co Antrim. Mineral Mag 24:324–329CrossRefGoogle Scholar
  5. Barnett SJ, Adam CD, Jackson ARW (2001) An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12·26H2O. Cem Concr Res 31:13–17. doi: 10.1016/S0008-8846(00)00429-4 CrossRefGoogle Scholar
  6. Batic OR, Milanesi CA, Maiza PJ, Marfil SA (2000) Secondary ettringite formation in concrete subjected to different curing conditions. Cem Concr Res 30:1407–1412. doi: 10.1016/S0008-8846(00)00343-4 CrossRefGoogle Scholar
  7. Baur I, Johnson AC (2003) The solubility of selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O) and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O). Cem Concr Res 33:1741–1748. doi: 10.1016/S0008-8846(03)00151-0 CrossRefGoogle Scholar
  8. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197. doi: 10.1107/S0108768190011041 CrossRefGoogle Scholar
  9. Brough AR, Atkinson A (2001) Micro-Raman spectroscopy of thaumasite. Cem Concr Res 31:421–424. doi: 10.1016/S0008-8846(00)00459-2 CrossRefGoogle Scholar
  10. Brown PW (1987) Early hydration of tetracalcium aluminoferrite in gypsum and lime-gypsum solutions. J Am Ceram Soc 70:493–496CrossRefGoogle Scholar
  11. Brown PW, Hooton RD (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. Cem Concr Res 24:361–370. doi: 10.1016/S0958-9465(01)00088-9 CrossRefGoogle Scholar
  12. Brown PW, Hooton RD, Clark BA (2003) The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. Cem Concr Res 25:939–945. doi: 10.1016/S0958-9465(03)00152-5 CrossRefGoogle Scholar
  13. Buhlert R, Kuzel H-J (1971) UЁ ber den Einbau von Cr3+ und Fe3+ in Ettringit. ZKG Int 2:83–85Google Scholar
  14. Chrysochoou M, Dermatas D (2006) Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study. J Hazard Mater 136:20–33. doi: 10.1016/j.jhazmat.2005.11.008 CrossRefGoogle Scholar
  15. Chukanov NV, Britvin SN, Van KV, Möckel S, Zadov AE (2012) Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new member of the ettringite group from the Eifel area, Germany. Can Mineral 50:55–63. doi: 10.3749/canmin.50.1.55 CrossRefGoogle Scholar
  16. Chukanov NV, Kasatkin AV, Zubkov NV, Britvin SN, Pautov LA, Pekov IV, Varlamov DA, Bychkov YV, Loskutov AB, Novgorodov EA (2016) Tatarinovite Ca3Al(SO4)[B(OH)4](OH)6·12H2O, a new ettringite-group mineral from the Bazhenovskoe deposit, Middle Urals, Russia, and its crystal structure. Geol Ore Depos 58:653–665. doi: 10.1134/S1075701516080080 CrossRefGoogle Scholar
  17. Cody AM, Lee H, Cody RD, Spry PG (2004) The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3∙26H2O. Cem Concr Res 34:869–881. doi: 10.1016/j.cemconres.2003.10.023 CrossRefGoogle Scholar
  18. Drebushchak VA, Seryotkin YV, Kokh SN, Sokol EV (2013) Natural specimen of triple solid state solution ettringite–thaumasite–chromate–ettringite. J Therm Anal Calorim 114:777–783. doi: 10.1007/s10973-013-2989-3 CrossRefGoogle Scholar
  19. Dunn PJ, Peacor DR, Leavens PB, Baum JL (1983) Charlesite, a new mineral of the ettringite group from Franklin, New Jersey. Am Mineral 68:1033–1037Google Scholar
  20. Eckhardt F-J, Heimbach W (1963) Ein natürliches Vorkommen von CaCrO4 (Chromatit). Naturwiss 50:612CrossRefGoogle Scholar
  21. Elie M, Techer I, Trotignon L, Khoury H, Salameh E, Vandamme D, Boulvais P, Fourcade S (2007) Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruck natural analogue (central Jordan). Appl Geochem 22:1311–1328. doi: 10.1016/j.apgeochem.2007.02.013 CrossRefGoogle Scholar
  22. Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219. doi: 10.1016/j.palaeo.2012.10.020 CrossRefGoogle Scholar
  23. Frost RL (2004) Raman microscopy of selected chromate minerals. J Raman Spectr 35:153–158. doi: 10.1002/jrs.1121 CrossRefGoogle Scholar
  24. Galimova LA, Danilov VP, Lepeshkov IN, Yudovich BE, Shebanov NA (1988) A study of the formation and decomposition of the calcium iron(III) double hydroxide sulphate Ca6Fe2(OH)12(SO4)3·26H2O in the 3Ca(OH)2 + Fe2(SO4)3 → 3CaSO4 + 2Fe(OH)3–H2O system at 20°C. Russ J Inorg Chem 33:445–448Google Scholar
  25. Gatta GD, McIntyre GJ, Swanson JG, Jacobsen SD (2012) Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Am Mineral 97:1060–1069. doi: 10.2138/am.2012.4058 CrossRefGoogle Scholar
  26. Goetz-Neunhoeffer F, Neubauer J, Schwesig P (2006) Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cem Concr Res 36:65–70. doi: 10.1016/j.cemconres.2004.04.037 CrossRefGoogle Scholar
  27. Granger MM, Protas J (1969) Détermination et etude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)6·12H2O. Acta Crystallogr B 25:1943–1951CrossRefGoogle Scholar
  28. Gross S (1977) The mineralogy of the Hatrurim formation, Israel. Geol Surv Isr Bull 70:80Google Scholar
  29. Gross S (1980) Bentorite. A new mineral from the Hatrurim area, west of the Dead Sea, Israel. Isr J Earth Sci 29:81–84Google Scholar
  30. Gross S, Mazor E, Sass S, Zak I (1967) The ‘‘Mottled Zone’’ complex of Nahal Ayalon (Central Israel), Israel. Isr J Earth Sci 16:84–96Google Scholar
  31. Hampson CJ, Bailey JE (1982) On the structure of some precipitated calcium alumino–sulphate hydrates. J Mater Sci 17:3341–3346CrossRefGoogle Scholar
  32. Hartman MR, Berliner R (2006) Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques. Cem Concr Res 36:364–370. doi: 10.1016/j.cemconres.2005.08.004 CrossRefGoogle Scholar
  33. Hauff PL, Foord EE, Rosenblum S, Hakki W (1983) Hashemite, Ba(Cr, S)O4, a new mineral from Jordan. Am Mineral 68:1223–1225Google Scholar
  34. Khoury HN, Al-Zoubi AS (2014) Origin and characteristics of Cr-smectite from Suweileh area, Jordan. Appl Clay Sci 90:43–52. doi: 10.1016/j.clay.2014.01.00 CrossRefGoogle Scholar
  35. Khoury H, Mackenzie R, Russell J, Tait J (1984) An iron-free volkonskoite. Clay Miner 19:43–57CrossRefGoogle Scholar
  36. Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Kozmenko OA, Goryainov SV, Clark ID (2016a) Intermediate members of the lime-monteponite solid solutions (Ca1−xCdxO, x = 0.36–0.55): discovery in natural occurrence. Am Mineral 101:146–161. doi: 10.2138/am-2016-536 CrossRefGoogle Scholar
  37. Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID (2016b) Tululite, Ca14(Fe3+, Al)(Al, Zn, Fe3 + , Si, P, Mn, Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineral Petrol 110:125–140. doi: 10.1007/s00710-015-0413-3 CrossRefGoogle Scholar
  38. Klemm WA (1998) Ettringite and oxyanion substituted ettringites—their characterization and applications in the fixation of heavy metals: a synthesis of the literature. Portland Cement Ass Res Develop Bull 116:70Google Scholar
  39. Kolodny Y (1979) Natural cement factory, a geological story. In: Skalny J (ed) Cement production and use, Conference Proceedings, Ringe, New Hampshire, pp 203–216Google Scholar
  40. Leisinger SM, Lothenbach B, Le Saout G, Kägi R, Wehrli B, Johnson CA (2010) Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4)x(SO4)1−x]3·26H2O. Environ Sci Technol 44:8983–8988. doi: 10.1021/es100554v CrossRefGoogle Scholar
  41. Liu C, Hystad G, Golden JJ, Hummer DR, Downs RT, Morrison SM, Ralph JP, Hazen RM (2017) Chromium mineral ecology. Am Mineral 102:612–619. doi: 10.2138/am-2017-5900 CrossRefGoogle Scholar
  42. Macphee DE, Barnett SJ (2004) Solution properties of solids in the ettringite–thaumasite solid solution series. Cem Concr Res 34:1591–1598. doi: 10.1016/j.cemconres.2004.02.022 CrossRefGoogle Scholar
  43. Malinko SV, Chukanov NV, Dubinchuk VT, Zadov AE, Koporulina EV (2001) Buryatite, Ca3(Si, Fe3+, Al)[SO4](OH)5O·12H2O, a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva 130:72–78Google Scholar
  44. McDonald AM, Petersen OV, Gault RA, Johnsen O, Niedermayr G, Branstätter F (2001) Micheelsenite, (Ca, Y)3Al(PO3OH, CO3)(CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. N Jb Miner Mh 8:337–351Google Scholar
  45. Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301CrossRefGoogle Scholar
  46. Model S506 Interactive Peak Fit (2002) User’s manual. Canberra Industries Inc, CanberraGoogle Scholar
  47. Moore A, Taylor HFW (1970) Crystal structure of ettringite. Acta Crystallogr B26:386–393CrossRefGoogle Scholar
  48. Möschner G, Lothenbach B, Rose J, Ulrich A, Figi R, Kretzschmar R (2008) Solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3·26H2O). Geochim Cosmochim Acta 72:1–18. doi: 10.1016/j.gca.2007.09.035 CrossRefGoogle Scholar
  49. Möschner G, Lothenbach B, Winnefeld F, Ulrich A, Figi R, Kretzschmar R (2009) Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1–xFex(OH)6]2(SO4)3·26H2O). Cem Concr Res 39:482–489. doi: 10.1016/j.cemconres.2009.03.001 CrossRefGoogle Scholar
  50. Motzet H, Pöllmann H (1999) Synthesis and characterisation of sulfite-containing AFm phases in the system CaO–Al2O3–SO2–H2O. Cem Concr Res 29:1005–1011. doi: 10.1016/S0008-8846(99)00082-4 CrossRefGoogle Scholar
  51. Nishio-Hamane D, Ohnishi M, Momma K, Shimobayashi N, Miyawaki R, Minakawa T, Inabaet S (2015) Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineral Mag 79:413–423. doi: 10.1180/minmag.2015.079.2.18 CrossRefGoogle Scholar
  52. Norman RL, Dann SE, Hogg SC, Kirk CA (2013) Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6[Ga(OH)6·12H2O]2(SO4)3·2H2O and Ca6[M(OH)6·12H2O]2(SO4)2(CO3)2, M = Mn, Sn. Solid State Sci 25:110–117. doi: 10.1016/j.solidstatesciences.2013.08.006 CrossRefGoogle Scholar
  53. Ogawa K, Roy DM (1982) C4A3S̄ hydration, ettringite formation, and its expansion mechanism: III. Effect of CaO, NaOH and NaCl; conclusions. Cem Concr Res 12:247–256. doi: 10.1016/0008-8846(82)90011-4 CrossRefGoogle Scholar
  54. Pekov IV, Chukanov NV, Britvin SN, Kabalov YK, Göttlicher J, Yapaskurt VO, Zadov AE, Krivovichev SV, Shüller W, Ternes B (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series. Mineral Mag 76:1133–1152. doi: 10.1180/minmag.2012.076.5.06 CrossRefGoogle Scholar
  55. Perkins RB, Palmer CD (1999) Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75°C. Geochim Cosmochim Acta 63:1969–1980. doi: 10.1016/S0016-7037(99)00078-2 CrossRefGoogle Scholar
  56. Perkins RB, Palmer CD (2000) Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of ettringite, 5–75°C. Appl Geochem 15:1203–1218. doi: 10.1016/S0883-2927(99)00109-2 CrossRefGoogle Scholar
  57. Pöllmann H, Kuzel H-J (1990) Solid solution of ettringites part I: incorporation of OH and CO3 2− in 3CaO.A12O3.32H2O. Cem Concr Res 20:941–947CrossRefGoogle Scholar
  58. Pöllmann H, Kuzel H-J, Wenda R (1989) Compounds with ettringite structure. N Jb Mineral Abh 160:133–158Google Scholar
  59. Pöllmann H, Auer S, Kuzel H-J (1993) Solid solution of ettringites: Part II: incorporation of B(OH)4 and CrO4 2− in 3CaO·Al2O3·3CaSO4·32H2O. Cem Concr Res 23:422–430CrossRefGoogle Scholar
  60. Pushcharovsky DY, Lebedeva YS, Zubkova NV, Pasero M, Bellezza M, Merlino S, Chukanov NV (2004) The crystal structure of sturmanite. Can Mineral 42:723–729. doi: 10.2113/gscanmin.42.3.723 CrossRefGoogle Scholar
  61. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  62. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi: 10.1107/S0108767307043930 CrossRefGoogle Scholar
  63. Shimada Y, Johansen VC, Miller FMG, Mason TO (2005) Chemical path of ettringite formation in heat-cured mortar and its relationship to expansion: a literature review. Portland Cement Association, SkokieGoogle Scholar
  64. Sokol EV, Novikov IS, Zateeva SN, Sharygin VV, Vapnik Y (2008) Pyrometamorphic rocks of the spurrite–merwinite facies as indicators of hydrocarbons discharge zones (the Hatrurim Formation, Israel). Dokl Earth Sci 420:608–614. doi: 10.1134/S1028334X08040181 CrossRefGoogle Scholar
  65. Sokol EV, Gaskova OL, Kokh SN, Kozmenko OA, Seryotkin YV, Vapnik Y, Murashko MN (2011) Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. Am Mineral 96:659–674. doi: 10.2138/am.2011.3487 CrossRefGoogle Scholar
  66. Sokol EV, Kokh SN, Vapnik Y, Thiéry V, Korzhova SA (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487. doi: 10.2138/am.2014.4704 CrossRefGoogle Scholar
  67. Sokol EV, Kokh SN, Khoury HN, Seryotkin YV, Goryainov SV (2016) Long-term immobilization of Cd2+ at the Tulul Al Hammam natural analogue site, central Jordan. Appl Geochem 70:43–60. doi: 10.1016/j.apgeochem.2016.05.002 CrossRefGoogle Scholar
  68. Sokol EV, Kozmenko OA, Khoury HN, Kokh SN, Novikova SA, Nefedov AA, Sokol IA, Zaikin P (2017) Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res 46:204–226. doi: 10.1016/j.gr.2017.03.008 CrossRefGoogle Scholar
  69. Stark J, Wicht B (2013) Durability of Dauerhaftigkeit von Beton. Springer-Verlag, Berlin, HeideldergCrossRefGoogle Scholar
  70. Terai T, Mikuni A, Komatsu R, Ikeda K (2006) Synthesis of Cr(VI)-ettringite in portlandite suspensions as a function of pH. J Ceram Soc Japan 114:299–302. doi: 10.2109/jcersj.114.299 CrossRefGoogle Scholar
  71. Thiéry V, Trincal V, Davy CA (2017) The elusive ettringite under the high-vacuum SEM–a reflection based on natural samples, the use of Monte Carlo modelling of EDS analyses and an extension to the ettringite group minerals. Microscopy. doi: 10.1111/jmi.12589 Google Scholar
  72. Warren CJ, Reardon EJ (1994) The solubility of ettringite at 25 °C. Cem Concr Res 24:1515–1524. doi: 10.1016/0008-8846(94)90166-x CrossRefGoogle Scholar
  73. Wieczorek-Ciurowa K, Fela K, Kozak AJ (2001) Chromium(III)-ettringite formation and its thermal stability. J Therm Anal Calorim 65:655–660. doi: 10.1023/A:1017978414203 CrossRefGoogle Scholar
  74. You K-S, Ahn J-W, Han D-Y, Cho K-H, Kim H (2007) Changing morphology and crystal structure in ettringite by trivalent chromium. Mater Sci Forum 544–545:529–532. doi: 10.4028/www.scientific.net/MSF.544-545.529 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yurii V. Seryotkin
    • 1
    • 2
  • Ella V. Sokol
    • 1
  • Svetlana N. Kokh
    • 1
  • Mikhail N. Murashko
    • 3
  1. 1.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Saint Petersburg State University, Saint Petersburg BranchSaint PetersburgRussia

Personalised recommendations