Skip to main content

Advertisement

Log in

Pargasite at high pressure and temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The PT phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the “phlogopite peridotite unit” of the Finero mafic–ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP–HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the PT range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch–Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa−1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 ~ K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) ~ 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman’s formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10−5 K−1 and α1 = 1.4(6)·10−9 K−2 [with α0(a) = 0.47(6)·10−5 K−1, α0(b) = 1.07(4)·10−5 K−1, and α0(c) = 0.97(7)·10−5 K−1]. The petrological implications for the experimental findings of this study are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agilent Technologies (2011) Xcalibur CCD system, CrysAlisPro Software system, Version 1.171.35.XX. Agilent Technologies, Oxford

    Google Scholar 

  • Angel RJ (2000) High-temperature and high-pressure crystal chemistry. Rev Miner Geochem 41:35–60

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. J Pet 29:445–522

    Article  Google Scholar 

  • Boffa Ballaran T, Angel RJ, Carpenter MA (2000) High-pressure transformation behaviour of the cummingtonite-grunerite solid solution. Eur J Miner 12:1195–1213

    Article  Google Scholar 

  • Bose K, Ganguly J (1994) Thermogravimetric study of the dehydration kinetics of talc Am Mineral 79:692–699

    Google Scholar 

  • Cámara F, Oberti R, Iezzi G, Della Ventura G (2003) The P21/mC2/m phase transition in synthetic amphibole Na(NaMg)Mg5Si8O22(OH)2: thermodynamic and crystal-chemical evaluation. Phys Chem Miner 30:570–581

    Article  Google Scholar 

  • Cámara F, Oberti R, Casati N (2007) The P21/mC2/m phase transition in amphiboles: new data on synthetic Na(NaMg)Mg5Si8O22F2 and the role of differential polyhedral expansion. Z Kristallogr 223:148–159

    Google Scholar 

  • Cameron M, Sueno S, Papike JJ, Prewitt CT (1983) High temperature crystal chemistry of K and Na fluor-richterites. Am Mineral 68:924–943

    Google Scholar 

  • Cawthorn RG (1975) The amphibole peridotite–metagabbro complex, Finero, northern Italy. J Geol 83:437–454

    Article  Google Scholar 

  • Coltorti M, Siena F (1984) Mantle tectonite and fractionate peridotite at Finero (Italian Western Alps). Neues Jahrb Miner Abh 149:225–244

    Google Scholar 

  • Comodi P, Mellini M, Ungaretti L, Zanazzi PF (1991) Compressibility and high pressure structure refinement of tremolite, pargasite, and glaucophane. Eur J Miner 3:485–500

    Article  Google Scholar 

  • Comodi P, Boffa Ballaran T, Zanazzi PF, Capalbo C, Zanetti A, Nazzareni S (2010) The effect of oxo-component on the high-pressure behavior of amphiboles. Am Mineral 95:1042–1051

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci USA 104:9182–9186

    Article  Google Scholar 

  • Foley F, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Forneris JF, Holloway JR (2003) Phase equilibria in subducting basaltic crust: implications for H2O release from the slab. Earth Planet Sci Lett 214:187–201

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Pet 46:555–578

    Article  Google Scholar 

  • Gatta GD, McIntyre GJ, Oberti R, Hawthorne FC (2017) Order of [6]Ti4+ in a Ti-rich calcium amphibole from Kaersut, Greenland: a combined X-ray and neutron diffraction study. Phys Chem Miner 44:83–94

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, New York, p 390

    Book  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melt. Nature 336:459–462

    Article  Google Scholar 

  • Hawthorne FC (1981) Amphiboles and other hydrous pyriboles-mineralogy. Rev Miner 9A:1–102

    Google Scholar 

  • Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. Rev Miner Geochem 67:1–54

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Sardone N (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. Can Miner 34:577–593

    Google Scholar 

  • Iezzi G, Tribaudino M, Della Ventura G, Nestola F, Bellatreccia F (2005a) High-T phase transition of synthetic ANaB(LiMg)CMg5Si8O22(OH)2 amphibole: an X-ray synchrotron powder diffraction and FTIR spectroscopic study. Phys Chem Miner 32:515–523

    Article  Google Scholar 

  • Iezzi G, Gatta GD, Kockelmann W, Della Ventura G, Rinaldi R, Schäfer W, Piccinini M, Gaillard F (2005b) Low-T neutron powder-diffraction and synchrotron-radiation IR study of synthetic amphibole Na(NaMg)Mg5Si8O22(OH)2. Am Mineral 90:695–700

    Article  Google Scholar 

  • Iezzi G, Tribaudino M, Della Ventura G, Margiolaki I (2011) The high temperature P21/m → C2/m phase transitions in synthetic amphiboles along the richterite-(BMg)-richterite join. Am Mineral 96:353–363

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356

    Article  Google Scholar 

  • Ionov DA, Bodinjer JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Pet 43:2219–2259

    Article  Google Scholar 

  • Jenkins DM, Corona JC (2006) Molar volume and thermal expansion of glaucophane. Phys Chem Miner 33:356–362

    Article  Google Scholar 

  • Jenkins DM, Corona JC, Bassett WA, Mibe K, Wang ZW (2010) Compressibility of synthetic glaucophane. Phys Chem Miner 37:219–226

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413. doi:10.1088/0022-3727/42/7/075413 (7 pp)

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) GSAS Generalized structure analysis system. Los Alamos National Laboratory Report LAUR 86–748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452

    Article  Google Scholar 

  • Mandler BE, Grove TL (2016) Controls on the stability and composition of amphibole in the Earth’s mantle. Contrib Miner Pet 171:68–87

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Nestola F, Pasqual D, Welch MD, Oberti R (2012) The effects of composition upon the high-pressure behaviour of amphiboles: compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole. Miner Mag 76:987–995

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contr Miner Pet 135:18–40

    Article  Google Scholar 

  • Papike JJ, Ross M, Clark JR (1969) Crystal chemical characterization of clinoamphiboles based on five new structure refinements. Miner Soc Am Spec Pap 2:117–136

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  • Poli S, Schmidt MW (1995) Water transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res 100:22299–22314

    Article  Google Scholar 

  • Rebuffi L, Plaisier JR, Abdellatief M, Lausi A, Scardi P (2014) MCX: a synchrotron radiation beamline for X-ray diffraction line profile analysis. Z Anorg Allg Chem 640:3100–3106

    Article  Google Scholar 

  • Reece JJ, Redfern SAT, Welch MD, Henderson CMB (2000) Mn-Mg disordering in cummingtonite: a high temperature neutron powder diffraction study. Miner Mag 64:255–266

    Article  Google Scholar 

  • Reece JJ, Redfern SAT, Welch MD, Henderson CMB, McCammon CA (2002) Temperature-dependent Fe2+-Mn2+ order-disorder behaviour in amphiboles. Phys Chem Miner 29:562–570

    Article  Google Scholar 

  • Rivalenti G, Garuti G, Rossi A (1975) The origin of the Ivrea-Verbano basic formation (Western Italian Alps), whole rock chemistry. Boll Soc Geol Ital 94:1149–1186

    Google Scholar 

  • Rivalenti G, Rossi A, Siena F, Sinigoi S (1984) The layered series of the Ivrea-Verbano igneous complex, Western Alps, Italy. Tscher Miner Petrol 33:77–99

    Article  Google Scholar 

  • Robinson P (1982) Phase relations of metamorphic amphiboles: natural occurrence and theory. Rev Miner 9B:1–3

    Google Scholar 

  • Rothkirch A, Gatta GD, Meyer M, Merkel S, Merlini M, Liermann H-P (2013) Single-crystal diffraction at the Extreme conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. J Synchrotron Rad 20:711–720

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Shen G, Liermann H-P, Sinogeikin S, Yang W, Hong X, Yoo C-S, Cynn H (2007) Distinct thermal behavior of GeO2 glass in tetrahedral, intermediate, and octahedral forms. Proc Natl Acad Sci 104:14576–14579

    Article  Google Scholar 

  • Siena F, Coltorti M (1989) The petrogenesis of a hydrated mafic ultramafic complex and the role of amphibole fractionation at Finero(Italian Western Alps). Neues Jahrb Miner Monatsh 6:255–274

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:1012. doi:10.1029/2001RG000108

    Article  Google Scholar 

  • Sueno S, Cameron M, Papike JJ, Prewitt CT (1973) High temperature crystal chemistry of tremolite. Am Mineral 58:649–664

    Google Scholar 

  • Syracuse EM, van Keren PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90

    Article  Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data of Al2O3. J Appl Cryst 20:79–83

    Article  Google Scholar 

  • Thompson EC, Campbell AJ, Liu ZX (2016) In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure. Am Mineral 101:706–712

    Article  Google Scholar 

  • Tribaudino M, Bruno M, Iezzi G, Della Ventura G, Margiolaki I (2008) The thermal behavior of richterite. Am Mineral 93:1659–1665

    Article  Google Scholar 

  • Vannucci R, Piccardo GB, Rivalenti G, Zanetti A, Rampone E, Ottolini L, Oberti R, Mazzucchelli M, Bottazzi P (1995) Origin of LrEE-depleted amphiboles in the subcontinental mantle. Geochim Cosmochim Acta 59:1763–1771

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Miner Pet 44:1–19

    Article  Google Scholar 

  • Welch MD, Knight KS (1999) A neutron powder diffraction study of cation ordering in high-temperature synthetic amphiboles. Eur J Miner 11:321–331

    Article  Google Scholar 

  • Welch MD, Camara F, Della Ventura G, Iezzi G (2007) Non-ambient in situ studies of amphiboles. Rev Miner Geochem 67:223–260

    Article  Google Scholar 

  • Welch MD, Reece JJ, Redfern SAT (2008) Rapid intracrystalline exchange of divalent cations in amphiboles: a high-temperature neutron diffraction study of synthetic K-richterite AKB(NaCa) C(Mg2.5Ni2.5)Si8O22(OH)2. Miner Mag 72:877–886

    Article  Google Scholar 

  • Welch MD, Gatta GD, Rotiroti N (2011a) The high-pressure behavior of orthorhombic amphiboles. Am Mineral 96:623–630

    Article  Google Scholar 

  • Welch MD, Cámara F, Oberti R (2011b) Thermoelasticity and high-T behaviour of anthophyllite. Phys Chem Miner 38:321–334

    Article  Google Scholar 

  • Yang H, Hazen RM, Prewitt CT, Finger LW, Lu R, Hemley RJ (1998) High-pressure single-crystal X-ray diffraction and infrared spectroscopic studies of the C2/m-P21/m phase transition in cummingtonite. Am Mineral 83:288–299

    Article  Google Scholar 

  • Zanazzi PF, Nestola F, Pasqual D (2010) Compressibility of protoamphibole: a high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite. Am Mineral 95:1758–1764

    Article  Google Scholar 

  • Zema M, Welch MD, Oberti R (2012) High-T behaviour of gedrite: thermoelasticity, cation ordering and dehydrogenation. Contrib Miner Pet 163:923–937

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Hafner SS (1992) Compressibility of grunerite. Am Mineral 77:480–483

    Google Scholar 

Download references

Acknowledgements

Mario Tribaudino and Wilson Crichton are gratefully thanked for the useful and fruitful comments and suggestions. The Editor, Milan Rieder is acknowledged for handling the manuscript. PETRA-III synchrotron facility (Hamburg, Germany) is acknowledged for provision of beamtime at P02.2 beamline. ELETTRA (Trieste, Italy) synchrotron facility is acknowledged for beamtime at MCX beamline. J. Plaisier is thanked for the support during the experiment at ELETTRA. The authors acknowledge the University of Milano, the Doctoral School of Earth Science of the University of Milano, and the DCO (Deep Carbon Observatory) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comboni, D., Lotti, P., Gatta, G.D. et al. Pargasite at high pressure and temperature. Phys Chem Minerals 45, 259–278 (2018). https://doi.org/10.1007/s00269-017-0915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0915-0

Keywords

Navigation