Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 3, pp 237–247 | Cite as

Determination of elastic constants of single-crystal chromian spinel by resonant ultrasound spectroscopy and implications for fluid inclusion geobarometry

  • Kenya Ono
  • Yuya Harada
  • Akira Yoneda
  • Junji Yamamoto
  • Akira Yoshiasa
  • Kazumasa Sugiyama
  • Hiroshi Arima
  • Tohru Watanabe
Original Paper

Abstract

We determined elastic constants of a single-crystal chromian spinel at temperatures from −15 to 45 °C through the Rectangular Parallelepiped Resonance method. The sample is a natural chromian spinel, which was separated from a mantle xenolith. Elastic constants at an ambient temperature (T = 24.0 °C) are C 11 = 264.8(1.7) GPa, C 12 = 154.5(1.8) GPa and C 44 = 142.6(0.3) GPa. All the elastic constants decrease linearly with increasing temperature. The temperature derivatives are dC 11/dT = −0.049(2) GPa/°K, dC 12/dT = −0.019(1) GPa/°K and dC 44/dT = −0.020(1) GPa/°K. As an implication of the elastic constants, we applied them to the correction of a fluid inclusion geobarometry, which utilizes residual pressure of fluid inclusion as a depth scale. Before entrainment by a magma, the fluid inclusions must have the identical fluid density in constituent minerals of a xenolith. It has been, however, pointed out that fluid density of fluid inclusions significantly varies with host mineral species. The present study elucidates that elastic constants and thermal expansion coefficients cannot explain the difference in fluid density among mineral species. The density difference would reflect the difference in the degree of plastic deformation in the minerals.

Keywords

Chromian spinel Elastic constants Resonance method Fluid inclusion Mantle xenolith Geobarometry 

Notes

Acknowledgements

We thank T. Okuchi, D. Yamazaki and T. Yoshino for their help in analyzing our sample. This study was supported from the Institute for Study of the Earth’s Interior, Okayama University for long-term Joint-Use Research.

References

  1. Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320CrossRefGoogle Scholar
  2. Anderson DL (2007) New theory of the Earth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Bass JD, Weidner DJ (1984) Elasticity of single-crystal orthoferrosilite. J Geophys Res 89:4359–4371CrossRefGoogle Scholar
  4. Chang ZP, Barsch GR (1973) Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel. J Geophys Res 78:2418–2433CrossRefGoogle Scholar
  5. Cynn H, Anderson OL, Nicol M (1993) Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure Appl Geophys 141:415–444CrossRefGoogle Scholar
  6. Doraiswami MS (1947) Elastic constants of magnetite, pyrite and chromite. Proc Indian Acad Sci A 25:413–416Google Scholar
  7. Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77:6360–6384CrossRefGoogle Scholar
  8. Ito T, Yoshiasa A, Yamanaka T, Nakatsuka A, Maekawa H (2000) Site preference of cation and structural varation in MgAl2-xGaxO4 (0 ≤ x≤2) spinel solid solution. Z Anorg Allg Chem 626:42–49CrossRefGoogle Scholar
  9. Kobayashi T, Yamamoto J, Hirajima T, Ishibashi H, Hirano N, Lai Y, Prikhod’ko VS, Arai S (2012) Accuracy and precision of CO2 densimetry in CO2 inclusions: microthermometry vs. micro-Raman densimetry. J Raman Spectr 43:1126–1133CrossRefGoogle Scholar
  10. Liu HP, Schock RN, Anderson DL (1975) Temperature dependence of single-crystal spinel (MgAl2O4) elastic constants from 293 to 423 °K measured by light-sound scattering in the Raman-Nath region. Geophys J R Astr Soc 42:217–250CrossRefGoogle Scholar
  11. Navrotsky A (1994) Physics and chemistry of Earth materials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Ohno I (1976) Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. J Phys Earth 24:355–379CrossRefGoogle Scholar
  13. Pitzer KS, Stemer SM (1994) Equation of state valid continuously from zero to extreme pressure for H2O and CO2. J Chem Phys 101:3111–3116CrossRefGoogle Scholar
  14. Roedder E (1983) Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine. Earth Planet Sci Lett 66:369–379CrossRefGoogle Scholar
  15. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  16. Skimmer BJ (1966) Handbook of physical constants. Geol Soc Am Mem 97:78–96Google Scholar
  17. Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4 and Ca2SiO4, and the elastic properties of olivine group minerals at high temperature. J Phys Earth 27:209–238CrossRefGoogle Scholar
  18. Sumino Y, Ohno I, Goto T, Kumazawa M (1976) Measurement of elastic constants and internal frictions on single-crystal MgO by rectangular parallelepiped resonance. J Phys Earth 24:263–273CrossRefGoogle Scholar
  19. Suzuki I, Kumazawa M (1980) Anomalous thermal expansion in spinel MgAl2O4. Phys Chem Miner 5:279–284Google Scholar
  20. Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jahrb Miner Abhand 172:381–408Google Scholar
  21. Uchida H, Lavina B, Downs RT, Chelsy J (2005) Single-crystal X-ray diffraction of spinels from the San Carlos volcanic field, Arizona: spinel as a geothermometer. Am Miner 90:1900–1908CrossRefGoogle Scholar
  22. Visscher WM, Migliori A, Bell TM, Reinert RA (1991) On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J Acoust Soc Am 90:2154–2162CrossRefGoogle Scholar
  23. Wang H, Simmons G (1972) Elasticity of some mantle crystal structures, 1. Pleonaste and hercynite spinel. J Geophys Res 77:4379–4392CrossRefGoogle Scholar
  24. Webb SL, Jackson I (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO3. Europ J Min 5:1111–1120CrossRefGoogle Scholar
  25. Weidner DJ, Bass JD, Vaughan MT (1982) The effect of crystal structure and composition on elastic properties of silicates. In: Akimoto S, Manghnani M (eds) High pressure research in geophysics. Center for Academic Publication Japan, Tokyo, pp 125–133CrossRefGoogle Scholar
  26. Yamamoto J, Kagi H (2008) Application of densimetry using micro-Raman spectroscopy for CO2 fluid inclusions: a probe for elastic strength of mantle minerals. Eur J Miner 20:529–535CrossRefGoogle Scholar
  27. Yamamoto J, Kagi H, Kaneoka I, Lai Y, Prikhod’ko VS, Arai S (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth Planet Sci Lett 198:511–519CrossRefGoogle Scholar
  28. Yamamoto J, Nakai S, Nishimura K, Kaneoka I, Kagi H, Sato K, Okumura T, Prikhod’ko VS, Arai S (2009) Intergranular trace elements in mantle xenoliths from Russian Far East: example for mantle metasomatism by hydrous melt. Island Arc 18:225–241CrossRefGoogle Scholar
  29. Yamamoto J, Ostuka K, Ohfuji H, Ishibashi H, Hirano N, Kagi H (2011) Retentivity of CO2 in fluid inclusions in mantle minerals. Eur J Miner 23:805–815CrossRefGoogle Scholar
  30. Yamamoto J, Nishimura K, Ishibashi H, Kagi H, Arai S, Prikhod’ko VS (2012) Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analysis of mantle xenoliths: direct evidence for high geothermal gradient in backarc lithosphere. Tectonophys 554–557:74–82CrossRefGoogle Scholar
  31. Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700 °C. Z Kristallogr 165:65–78CrossRefGoogle Scholar
  32. Yoneda A (1990) Pressure derivatives of elastic constants of single crystal MgO and MgAl2O4. J Phys Earth 38:19–55CrossRefGoogle Scholar
  33. Yoneda A (2002) Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy: evidence for a coupling vibration between a sample and transducers. Earth Planets Space 54:763–770CrossRefGoogle Scholar
  34. Yoneda A, Aizawa Y, Rahman MM, Sakai S (2007) High frequency resonant ultrasound spectroscopy to 50 MHz: Experimental developments and analytical refinement. Jpn J Appl Phys 46:7898–7903CrossRefGoogle Scholar
  35. Yoshiasa A, Ito T, Sugiyama K, Nakatsuka A, Okube M, Kurosawa M, Katsura T (2010) A peculiar site preference of Boron in MgAl2-xBxO4 (x = 0.0, 0.11 and 0.13) spinel under high-pressure and high-temperature. Z Anorg Allg Chem 636:472–475CrossRefGoogle Scholar
  36. Zhang Y (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kenya Ono
    • 1
    • 6
  • Yuya Harada
    • 1
    • 7
  • Akira Yoneda
    • 2
  • Junji Yamamoto
    • 3
  • Akira Yoshiasa
    • 4
  • Kazumasa Sugiyama
    • 5
  • Hiroshi Arima
    • 5
  • Tohru Watanabe
    • 1
  1. 1.Department of Earth SciencesUniversity of ToyamaToyamaJapan
  2. 2.Institute for Study of the Earth’s InteriorOkayama UniversityOkayamaJapan
  3. 3.The Hokkaido University Museum, Hokkaido UniversitySapporoJapan
  4. 4.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  5. 5.Institute for Materials ResearchTohoku UniversitySendaiJapan
  6. 6.OYO CorporationTokyoJapan
  7. 7.Sanko CorporationKurumeJapan

Personalised recommendations