Skip to main content
Log in

Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The Mössbauer spectra of a nearly stoichiometric natural bornite, Cu5FeS4, specimen were reinvestigated between 295 and 4.2 K. There is no difference between the Neél temperature T N as determined by the Mössbauer effect or by the susceptibility measurements (T N = 67.5 K). No additional paramagnetic doublet can be observed in the low-temperature MS spectra. The valence state of Fe is Fe(3−x)+ caused by a partial electron transfer from the Cu+ ions to the Fe3+ ions which increases the shielding of the s-electrons by the d-electron density and by this increases the isomer shift to a value intermediate between tetrahedral high-spin Fe2+ and tetrahedral high-spin Fe3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharoni A (1996) Introduction to the theory of ferromagnetism. Clarendon Press, Oxford

    Google Scholar 

  • Amthauer G, Bente K (1983) Mixed-valent iron in synthetic rasvumite, KFe2S3. Z Naturwissenschaften 70:146–147

    Article  Google Scholar 

  • Bente K (1987) Stabilization of Cu–Fe–Bi–Pb–Sn-sulfides. Mineral Petrol 36:205–217

    Article  Google Scholar 

  • Borgheresi M, Di Benedetto F, Caneschi A, Pratesi G, Romanelli M, Sorace L (2007) An EPR and SQUID manetometry study of bornite. Phys Chem Minerals 34:609–619

    Article  Google Scholar 

  • Coey JMD, Spender MR, Morrish AH (1970) Magnetic structure of the spinel Fe3S4. Solid State Comm 8:1605–1608

    Article  Google Scholar 

  • Collins MF, Longworth G, Townsend MG (1981) Magnetic structure of bornite, Cu5FeS4. Can J Phys 59:535–539

    Article  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley Interscience, Hoboken

    Google Scholar 

  • Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005) 57Fe- and 119Sn-Mössbauer study on stannite (Cu2FeSnS4)–kesterite (Cu2ZnSnS4) solid solution. Phys Chem Minerals 31:683–690

    Article  Google Scholar 

  • Forcher K, Lottermoser W, Amthauer G (1989) Mössbauer study of raguinite, TlFeS2, and thalcusite, Cu3Tl2FeS4. In: Moh GH (ed) Ore minerals: an experimental approach and new observations. N Jb Miner Abh 160:25–28

  • Gainov RR, Dooglav AV, Pen’kov IN, Mukhamedshin IR, Mozgova NN, Evlampiev IA, Bryzgalov IA (2009) Phase transition and anomalous electronic behavior in the layered superconductor CuS probed by NQR. Phys Rev B 79:075115

    Article  Google Scholar 

  • Gainov RR, Vagizov FG, Golovanevskiy VA, Ksenofontov VA, Klingelhöfer G, Klekovkina VV, Shumilova TG, Pen’kov IN (2014) Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of Bornite (Cu5FeS4) copper ore. Hyperfine Interact 226:51–55

    Article  Google Scholar 

  • Goh WG, Buckley AN, Skinner WM, Fan LJ (2010) An X-ray photoelectron and absorption spectroscopic investigation of the electronic structure of cubanite, CuFe2S3. Phys Chem Minerals 37:389–405

    Article  Google Scholar 

  • Goodenough JB (1982) Mössbauer 57Fe isomer Shift as a measure of valence in mixed-valence iron sulphides. J Solid State Chem 41:1–22

    Article  Google Scholar 

  • Hawthorne F (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, Rev Mineral 18:255–340

  • Jagadeesh MS, Nagarathna HM, Montano PA, Seehra MS (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite Cu4.5Fe1.2S4.7. Phys Rev B 23:2350–2356

    Article  Google Scholar 

  • Koto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Cryst B31:2268–2273

    Article  Google Scholar 

  • Lagarec K, Rancourt DG (1998) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods 129:266–280

    Article  Google Scholar 

  • Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191

    Article  Google Scholar 

  • McCammon C, Zhang J, Robert M, Hazen L, Finger W (1992) High pressure crystal chemistry of cubanite, CuFe2S3. Am Min 77:937–944

    Google Scholar 

  • Mikhlin Y, Tomashevich Y, Tauson V, Vyalikh D, Molodtsov S, Szargand R (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectrosc Relat Phenom 142:83–88

    Article  Google Scholar 

  • Morrish AH (1980) The physical principles of magnetism. RE Krieger Publishing Company Inc, Malabar

    Google Scholar 

  • Oak HN, Baek KS, Jo Y (1996) Superparamagnetic relaxation in Cu5FeS4. Solid State Commun 100:467–470

    Article  Google Scholar 

  • Patrick RAD, van der Laan G, Charnock JM, Grguric BA (2004) Cu Lα X-ray absorption spectroscopy and the electronic structure of minerals: spectral variations in non stoichiometric bornites, Cu5FeS4. Am Mineral 89:541–546

    Article  Google Scholar 

  • Przewoznik J, Zukrowski J, Gondek L, Gąska C, Lemański A, Kapusta C, Piestrzyński A (2013) Structural, magnetic, and Mössbauer effect studies of bornite. Nukleonika 58:43–46

    Google Scholar 

  • Qiu P, Zhang T, Qiu Y, Shi X, Chen L (2014) Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy Environ Sci 7:4000–4006

    Article  Google Scholar 

  • Schmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2–FeS2 solid solution series. Phys Chem Minerals 19:571–577

    Article  Google Scholar 

  • Townsend MG, Gosselin JR, Tremblay RJ, Ripley LG, Carson DW, Muir WB (1977) A magnetic and Mössbauer study of magnetic ordering and vacancy clustering in Cu5FeS4. Phys Chem Solids 38:1153–1159

    Article  Google Scholar 

  • Van der Laan G, Patrick RAD, Charnock JM (2002) Cu L-2, L-3 X-ray absorption and the electronic structure of nonstoichiometric Cu5FeS4. Phys Rev B 6604:135–139

    Google Scholar 

  • Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. In: Proc 24th IGC, 21–30 September 1972, Montreal, 158–167

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, London, p 494

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Departments of Chemistry and of Earth Sciences of the University of Florence, for funding this research under the ex-60% programme, and the Italian CNR, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Di Benedetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgheresi, M., Di Benedetto, F., Romanelli, M. et al. Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides. Phys Chem Minerals 45, 227–235 (2018). https://doi.org/10.1007/s00269-017-0911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0911-4

Keywords

Navigation